2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 21, 22, 23, 24, 25, 26, 27 ... 67  След.
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 15:04 
Заслуженный участник


11/05/08
32166
mishafromusa в сообщении #874577 писал(а):
Хорошо, она присутствует неявно, т.к. константа -- это $Cx^0$,

Ну так нельзя. Я понимаю, что слайды, прожекторы, все в экстазе, но ключевые положения должны присутствовать явно. И, в частности, явно должны присутствовать, притом выделенно, определения и формулировки теорем. У Вас же какая-то мешанина; не знаю, как насчёт слушать, но читать этот текст совершенно невозможно.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 15:24 


12/02/14
808
ewert в сообщении #874586 писал(а):
У Вас же какая-то мешанина; не знаю, как насчёт слушать, но читать этот текст совершенно невозможно.
Я школьникам это рассказывал, часа за 4 до стр 15, правда, больще на доске, но и со слайдами тоже. А математикам -- все 20 страниц за 50 минут, или первые 14 за 20 минут, и все, вроде, поняли. Сами по себе их конечно трудно читать, но неужели идеи не просмативается? А статью, которую я вывесил, Вы не видели?

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 15:34 
Заслуженный участник


11/05/08
32166
mishafromusa в сообщении #874594 писал(а):
А статью, которую я вывесил, Вы не видели?

Не помню. Вывесьте ещё раз.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 15:46 


12/02/14
808
ewert в сообщении #874598 писал(а):
mishafromusa в сообщении #874594 писал(а):
А статью, которую я вывесил, Вы не видели?

Не помню. Вывесьте ещё раз.
Вот тут: http://www.mathfoolery.com/Article/simpcalc-v1.pdf
Вот здесь написанно более пространно, может поможет понять: http://mathfoolery.com/lathead.pdf

-- 12.06.2014, 09:09 --

Munin в сообщении #874572 писал(а):
О. Поделитесь ссылкой.

И вот это тоже, Munin: http://mathfoolery.com/lathead.pdf

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 16:10 
Заслуженный участник
Аватара пользователя


30/01/06
72407
g______d в сообщении #874428 писал(а):
Цель анализа как раз в том, чтобы понять такие вещи, как предел, непрерывность, дифференцируемость. Именно в таком порядке. Даже для не-математиков

С чего это вдруг именно в таком? Лично я думаю, что цель анализа в том, чтобы понять такие вещи, как:
- знак и нули;
- производную, возрастание и убывание, экстремумы;
- определённый интеграл;
- неопределённый интеграл и решение дифференциальных уравнений;
- некоторые топологические явления (здесь непрерывность);
- асимптотическое поведение, порядки малости (здесь предел).
Порядок не обязательно именно такой, но для практических нужд (нематематиков) элементарное исследование функций ("анализ" в изначальном смысле) требуется гораздо раньше, чем продвинутое.

g______d в сообщении #874428 писал(а):
А студенты анализа изучают, вообще говоря, произвольные функции и произвольные последовательности, поэтому им нужны непрерывность и пределы.

Нет, студенты-нематематики изучают не произвольные функции! И вы с этим уже соглашались. Зачем же по-новой произносить отвергнутое утверждение?

Чего вам на самом деле хочется: переспорить противника, или докопаться до истины?

g______d в сообщении #874432 писал(а):
С конкретными кусочно-аналитическими функциями они работают в школе. А в курсе анализа они работают сразу с произвольными

Это и есть существенный недостаток курса анализа для нематематиков.

Пусть даже в конечном счёте они будут работать с произвольными. Но зачем сразу?

g______d в сообщении #874436 писал(а):
Вы имеете в виду объяснить, как механически дифференцировать, а потом рассказать, что такое производная? Так никто не делает и это неправильно по всем возможным причинам.

Кроме одной: что так было бы весьма нужно и полезно для применения вне математики.

Старайтесь поменьше употреблять квантор всеобщности.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 16:18 


12/02/14
808
Munin в сообщении #874612 писал(а):
Кроме одной: что так было бы весьма нужно и полезно для применения вне математики.
Вот тут, почитайте. Munin:
http://mathfoolery.com/lathead.pdf

-- 12.06.2014, 09:26 --

g______d в сообщении #874419 писал(а):
Я периодически слышу про вред эпсилонизма-дельтоизма, но совершенно в другом контексте (и не разделяю): что это жуткая второкультурщина и надо всех учить сначала топологии.
Ну это будет совсем патология :-)

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 16:56 
Заслуженный участник
Аватара пользователя


30/01/06
72407
g______d в сообщении #874448 писал(а):
Насколько я понимаю, это сводится к тому, что "зачем нам писать $\lim\limits_{x\to a} f(x)$, если можно просто взять и написать $f(a)$?"

Даже если так, чем это плохо, если мы знаем, что $f(x)$ непрерывна в $a$?

Задачу можно решать в обратном порядке: сначала найти производную, а потом исследовать её на непрерывность, что поначалу выглядит как просто глядение глазами на график получившейся производной. (И на формулу.)

Единственная неприятность будет при взятии производной от функции Хевисайда. Ну, о ней можно предупредить (не считать производную непрерывной в точках, где разрывна сама дифференцируемая функция). И даже физически пояснить, что в этой точке происходит, отослав к будущему понятию дельта-функции.

g______d в сообщении #874456 писал(а):
Я возражал на коммутативную алгебру.

Ваше возражение работает и здесь: предел поначалу используется исключительно для понятия непрерывности и производной, и только через большое время начинает использоваться для других целей.

g______d в сообщении #874458 писал(а):
Человеку, умеющему считать, аксиомы Пеано самоочевидны.

Аналогично, человеку, умеющему считать производные, и всякие эпсилон-дельты самоочевидны. Но дают-то счёт и аксиомы Пеано в другом порядке.

g______d в сообщении #874462 писал(а):
В случае с интегралом ни о какой возможности строгих доказательств речь не идет.

Снова отклоняетесь от темы: нематематикам не нужно уметь доказывать. По крайней мере, это далеко не первостепенная задача.

g______d в сообщении #874468 писал(а):
Существование суммы целых чисел и существование площади – всё-таки вещи разного порядка. Одно очевидно, второе тоже очевидно, но не всегда верно.

Существование суммы целых чисел тоже не всегда верно - когда этих чисел бесконечно много.

И точно аналогичный факт справедлив и для площади. Её существование не всегда верно именно тогда, когда фигура получается из бесконечного числа простых фигур (сложением и вычитанием, например).

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 17:06 
Заслуженный участник


11/05/08
32166
Munin в сообщении #874627 писал(а):
когда фигура получается из бесконечного числа простых фигур

Что такое "простая фигура"?

-- Чт июн 12, 2014 18:20:30 --

mishafromusa в сообщении #874604 писал(а):
Вот тут: http://www.mathfoolery.com/Article/simpcalc-v1.pdf
Вот здесь написанно более пространно, может поможет понять: http://mathfoolery.com/lathead.pdf

Ни там, ни там обнаружить теоремы Ньютона-Лейбница мне не удалось. Вообще не обнаружилось никакой связи интеграла ни с площадями, ни с суммами.

Конечно, я просматривал по диагонали; но почему бы Вам не дать точную ссылку? Раз уж лень писать хоть что-то конкретное здесь.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 17:33 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ex-math в сообщении #874472 писал(а):
Смотря на каком уровне. Если вместо механического заучивания эпсилон-дельта студенты-нематематики научатся мыслить в терминах окрестностей (то есть как раз иметь в голове такие картинки) -- это уже очень хорошо.

Ну, это бы хорошо. Но вот полноценное понятие окрестности - штука сложная. Я уверен, что и вы, говоря "картинки окрестностей", подразумеваете всего лишь интервалы, содержащие точку, а не открытые множества, содержащие точку.

ex-math в сообщении #874472 писал(а):
Я уже отмечал родственный аргумент в пользу классического изложения -- на языке пределов, непрерывности и дифференцируемости написана вся литература, с которой придется студентам работать. Излагать анализ иначе -- значит закрыть им доступ к этой литературе или, как минимум, установить серьезный порог.

Это аргумент для студентов-математиков, но не для нематематиков.

Для нематематиков вся литература написана на языке "ну вы знаете, что такое производная, и знаете, как её посчитать". Пределы и непрерывность вспоминаются очень редко - когда надо обсудить асимптотики или топологию.

ex-math в сообщении #874472 писал(а):
Высокомерие по отношению к студентам? Понимаете, когда я учился анализу, я читал учебники. Просто так, на лекциях, понимание предмета само в голову не запрыгивало. Современные студенты (по крайней мере те, с кем я имею дело) в массе своей не хотят работать с учебником, ленятся разбираться, хотят, чтобы было достаточно прослушанной лекции. А ее не может быть достаточно в принципе, какой бы замечательный ни был лектор и какие бы альтернативные варианты изложения ни предложить. Все достигается только упражнениями, трудом. Так что проблема здесь не в сложности понятия непрерывности, а в массовом нежелании работать.

Тут сумбур. Во-первых, вы сравниваете себя (единичный пример) с массой студентов, которые имеют некоторое распределение. Вряд ли вы в своё время были в центре тяжести своего распределения. Во-вторых, вы сравниваете себя (наверняка студента-математика) со студентами-нематематиками (по крайней мере, такова тема этой темы; а с кем вы имеете дело, вы не уточнили). В-третьих, вы пишете как будто про два вида деятельности, хотя их по меньшей мере три: чтение учебников и упражнения - вещи разные. И наконец, массовое нежелание работать - отнюдь не новость. Оно и в 90-е было, и в 80-е, и в 70-е.

Преподавание должно быть построено именно с учётом массовой "неблистательности" учеников и массовой же лени. С ленью можно бороться розгами (незачётами), но вот ориентация на средние умы - обязательна. На выходе должны получиться наученные студенты, даже если они середнячки. Иначе данный преподаваемый курс просто не выполнил свою задачу.

nnosipov в сообщении #874479 писал(а):
Именно так. Мне иногда даже хочется употребить слово "саботаж". В последние годы особенно.

Человеку всегда кажется, что "раньше было лучше". Если попытаться вспомнить факты, то это обычно не так.

-- 12.06.2014 18:45:09 --

g______d в сообщении #874511 писал(а):
Для не-математиков в моём списке есть пункт 1. Ваш курс тоже проигрывает Calculus'у, основанному на физических примерах.

Этого вы толком не продемонстрировали.

g______d в сообщении #874514 писал(а):
В классической теории тоже можно "доказательства" включить, и даже сделать их более понятными.

Это раздует курс в разы, и он перестанет быть calculus-ом.

g______d в сообщении #874523 писал(а):
С избранными можно и обычный анализ понятно прочитать и без лишней мороки.

Можно, но почему-то так не делается. Почему, чёрт возьми?

g______d в сообщении #874523 писал(а):
А у Вас полного и последовательного изложения нет и не предвидится

Вот это меня тоже интересует.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 17:47 
Заслуженный участник


20/12/10
9150
Munin в сообщении #874638 писал(а):
С ленью можно бороться розгами (незачётами)
Это раньше можно было, а сейчас поди попробуй. Студентов просто мало по демографическим причинам. И те студенты, которые есть, это давно просекли. Скоро им придётся приплачивать, чтоб на лекции ходили. И упрощение лекций вряд ли изменит ситуацию. Нужна элементарная конкуренция. В наше время она действительно была, а сейчас её просто нет.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 17:51 


10/02/11
6786
а я вот не понимаю, а что, собственно , удивительного в том, что какие-то теоремы легче доказать на узком классе функций, чем на широком?
существование интеграла Римана от равномерно липшицевой функции на отрезке , кстати, доказывается тривиально, без всякой подготовки

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 17:53 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ewert в сообщении #874545 писал(а):
Школьникам не нужно, а вот инженерам иногда необходимо даже понятие об интеграле Лебега. Увы.

Приведите конкретные примеры. Именно инженерные. Или будем считать, что вы соврали.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 17:59 


10/02/11
6786
Munin
Вы, кстати, спрашивали что-то про плохие функции в приложениях. Представляете, какие ударные волны прыгают в стволе пушки между затвором и задницей снаряда, пока снаряд движется по стволу.

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 18:00 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ewert в сообщении #874630 писал(а):
Что такое "простая фигура"?

Я думал о наборе "треугольник, прямоугольник, круг", но сделаю проще: треугольник.

(Для школьников: на самом деле, прямоугольник. Потому что площадь прямоугольника мы знаем как посчитать.)

 Профиль  
                  
 
 Re: Как упростить преподавание матанализа нематематикам?
Сообщение12.06.2014, 18:09 
Заслуженный участник


11/05/08
32166
Munin в сообщении #874655 писал(а):
Приведите конкретные примеры. Именно инженерные.

Что значит "именно инженерные"?

В инженерных дисциплинах интеграл Лебега, естественно, не нужен. Однако инженеры изучают ещё и математику.

Они все изучают теорию вероятностей, где этот интеграл нужен. Конечно, при совсем уж вульгарном изложении он и там не нужен, однако для некоторых специальностей ТВ нужна на достаточно серьёзном уровне.

Некоторые инженеры изучают функциональный анализ, и тогда им он тоже нужен.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 991 ]  На страницу Пред.  1 ... 21, 22, 23, 24, 25, 26, 27 ... 67  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group