Итак, те формулы работают, Алексей К., все контрпримеры провалились.

LOLать особо не спешите.
Тот контрпример был к вполне конкретной ситуации, когда Вы предел по двум переменным подменяли пределом по траектории

. И никуда он не провалился. Вы просто чуть поумнели и придумали

.
И всё равно Ваши гениальные формулы, записанные теперь невыносимо громоздко, по-прежнему малограмотны
(они слишком тривиальны, чтобы быть неверными).
Предел по двум переменным так не считается. И не надо больше цитировать Фихтенгольца --- Вы читать не умеете (уже здесь было), и легко подкладываете прочитанное под себя.
Цитирую Г. М. Фихтенгольц "Курс дифференциального и интегрального исчисления", том 1, Глава пятая, пункт 166:
Заголовок: "Сведение к случаю варианты".
"Рассмотрим в

-мерном пространстве последовательность точек
......................................................
Я уж не буду всё цитировать, там дальше он всё доказывает, рассматривает различные случаи и примеры.
А цитировать надо было мелочь, несколько строк, написанных курсивом. Я их смотрел тогда, неделю назад, и было там слово
"всегда". Типа берём последовательность точек, строим последовательность значений функции, и она всегда сходится в одно и то же место...
"Всегда" означает что проделывать это надо, как минимум, утром, днём, и вечером. Чем в Вашем описании акта взятия предела и не пахнет.
Или "всегда" брать новую последовательность, до опупения. Что, конечно, ещё сложнее.
Для Ваших целей действительно было бы достаточно пределов при

по радиальным направлениям,

что есть просто предел функции одной переменной, и не заводить дополнительный сюжет. И с плюс-минусами мудрить не надо. Возможно, в каком-то диапазоне углов.