Например, если рассмотреть решение Керра (вечная вращающаяся чёрная дыра, если кто не знает), то его диаграмма Пенроуза представляет собой бесконечную цепочку вселенных -- как в прошлое, так и в будущее.
Если не ошибаюсь, там возникают замкнутые времениподобные внутри эргосферы
Так и в достаточно содержательной теории всегда можно смоделировать нечто "неправильное" (с той или иной точки зрения).
Это на мой взгляд недостаток теории. Она дает много мусорных решений, которые могут и не реализовываться в природе. Конечно это игрушки для теоретиков, лишние диссертации, но теория от этого становится менее физичной.
-- 15.04.2015, 20:17 --Ну, в этом случае берется другая карта. Разные карты - это же просто разные локальные координаты, вместе с той части многообразия, в которой эти локальные координаты определены. Одна и та же точка многообразия может, таким образом, находится на очень многих разных картах.
Конечно, для самого нахождения решении удачный выбор системы координат очень поможет. Но, раз решение получена, в какой-то одной системе, то уже вычислить ее в каких угодно других координатах упражнение для начального курса (как вычислить метрический тензор в других координатах).
Тут вопрос не очень простой, как выясняется. Вообще этот метод порочен, потому что не только школьник, но и теоретики в учебниках делают недопустимые преобразования координат и получают "новое решение", что в корне неудовлетворительно. Кроме того, Вы забываете, о классе допустимых преобразований. Например Петров нашел целый класс решений вне статического шара в классе
, причем нестатических и которые не переводятся в Шварцшильдовское решение, что противоречит теоремы Бергкофа. Физичность данных решений я не буду обсуждать, как и физичность решений с сингулярностями.
Кроме того, если рассматривать задачу с начальными данными, то я видел теоремы в нескольких работах о неоднозначности задачи Коши, то есть существуют несколько решений при тех же начальных данных. И наоборот, данные Коши ограничивают некоторые координатные системы в конкретной задаче.
Но в данной теме я имел в виду несколько другое. В стандартных координатах Шварцшильда все компоненты на границе коллапсирующего облака сшиваются на границе при резкой границе вакуум-вещество (например Вайнберг). Но в этих координатах нельзя доказать превращение облака при определенных условиях в ЧД. Доказательство проводится в синхронных координатах, но там на границе радиальная компонента терпит разрыв, что мне собственно и не нравится.