2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 12  След.
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение08.10.2020, 08:01 
Заслуженный участник


12/08/10
1680
vxv, вы не правы, из того что нет решений во взаимно простых $A, B, C$ очевидным образом следует гипотеза Била.
Доказательство: Пусть $A,B,C$ - решение, они не взаимно просты(предположим уже доказано), значит 2 из них делятся на некоторое простое $p$, но из равенства следует что и 3ее число делиться на $p$. Что и требовалось доказать.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение08.10.2020, 19:58 


19/04/14
321
Null в сообщении #1486214 писал(а):
Это неправда. $(m^2+n^2)^3=(3m^2n-n^3)^2+(m^3-3mn^2)^2$

Уважаемый Null!
Вы правы. С помощью показателей мною было показано совсем другое. А именно, что решение $b+ci$ не получится из исходного числа $(m^2+n^2)^3$. Хотя сразу ясно, $c+bi \ne b+ci$. Но эти комплексные числа в произведении с сопряженными дают одну и ту же сумму двух квадратов $(c+bi)(c-bi)=(b+ci)(b-ci)$. У нас же тождество $(m^2+n^2)=(n^2+m^2)$.

И это усиливает утверждение, что переменная $A^x$ охватывает все возможные пары квадратов $c^2+b^2$, удовлетворяющие решению неопределенного уравнения $A^x=C^2+B^2 \qquad (2)$.
Null в сообщении #1486214 писал(а):
Откуда это возникло?


binki в сообщении #1485966 писал(а):
Далее
$A^x=C^4+B^4 = (C^2)^2+(B^2)^2 \qquad (13)$
$A^x=(C^2+B^2i)(C^2-B^2 i)\qquad (14)$

Для (13) существует решение $(a, c^2, b^2 )$.
Но не может существовать целочисленное решение $(a, c, b)$.

Решение находится если $B^2i$ является квадратом целого числа. Обозначим:
$B_1^2=B^2i \qquad (18)$
То есть при $x=3$ для неопределенного уравнения
$A^3=C^2+B_1^2$ существует решение:
$a=m^2+n^2;$
$c=m^3-3mn^2;$
$b_1=3m^2n-n^3$
То есть с учетом (18)
$b_1=b \sqrt i =3m^2n - n^3;$

vxv в сообщении #1486231 писал(а):
Вот "из первых рук":

Первые руки также ошибаются. а на них ссылаются другие.
Повторяю. общий простой делитель возможен только при $x=y=z$. То есть тогда, когда уравнение Ферма рассматривается как частный случай уравнения Била. Иначе гипотеза Била сразу же опровергается примером, $aa^4=c^4a^4+b^4a^4$.
Покажите, где здесь общий простой делитель, если это справедливо для произвольного (a).

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение08.10.2020, 20:51 
Заслуженный участник


12/08/10
1680
binki в сообщении #1486350 писал(а):
То есть при $x=3$ для неопределенного уравнения
$A^3=C^2+B_1^2$ существует решение:
$a=m^2+n^2;$
$c=m^3-3mn^2;$
$b_1=3m^2n-n^3$
$B_1$ не целое(вообще комплексное) и, соответственно, вам это нужно доказывать отдельно и $n,m$ гарантированно не принадлежат $\mathbb{R}$

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение09.10.2020, 08:35 


19/04/14
321
Null в сообщении #1486358 писал(а):
$B_1$ не целое(вообще комплексное) и, соответственно, вам это нужно доказывать отдельно и $n,m$ гарантированно не принадлежат $\mathbb{R}$

Уважаемый Null
В этом то и заключается суть доква. Не существует суммы квадратов $c^2+b^2$ дающей по применяемой методике целые (c,b). Не делится $c^4+b^4$ на $c^2+b^2$, Зато делится на сумму квадратов один их которых мнимый $(b\sqrt i)^2$. Как показано здесь тоже нет решения.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение09.10.2020, 09:37 
Заслуженный участник


12/08/10
1680
binki в сообщении #1486390 писал(а):
В этом то и заключается суть доква
Подозрительная суть, надо подробно доказывать.
binki в сообщении #1486390 писал(а):
Как показано здесь тоже нет решения.
Где показано? Я не вижу строгой последовательности выводов.
binki в сообщении #1486350 писал(а):
$b_1=b \sqrt i =3m^2n - n^3;$
Не является противоречием.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение10.10.2020, 12:25 


22/03/20
102
binki в сообщении #1485966 писал(а):
Например, при показателе (x=3) (докво известное, но источник не помню.)


http://mathemlib.ru/books/item/f00/s00/ ... t008.shtml

задача 7.10
binki в сообщении #1486390 писал(а):
В этом то и заключается суть доква.


Уважаемый binki
Как я понял, суть доказательства в том, что с одной стороны $C^4+B^4$ не делится на $C^2+B^2$, поэтому из уравнения $A^x=C^4+B^4$ не вытекает неопределённое уравнение $A_1^x=C^2+B^2$, по которому нашлось бы решение $a,b,c$.
С другой стороны существует уравнение $A_1^x=C^2+B^2i=C^2+B_1^2$, где $B_1^2=(B \sqrt i)^2$ - мнимый квадрат.
Но оно также не даёт нужного решения. Пока всё убедительно и я не вижу ошибки.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение10.10.2020, 12:42 
Заслуженный участник


12/08/10
1680
Valprim в сообщении #1486547 писал(а):
http://mathemlib.ru/books/item/f00/s00/ ... t008.shtml
Это не доказательство. Там ни слова о том что это все решения.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение10.10.2020, 14:02 


22/03/20
102
Null в сообщении #1486549 писал(а):
Это не доказательство. Там ни слова о том что это все решения.

Уважаемый Null
Да, там говорится, что находятся решения способом .... И не утверждается, что способ определяет все решения.
Но в теме binki показано, что переменная $A$ формируется из любого комплексного числа и тем самым участвуют все возможные сопряженные числа, с помощью которых и образуются произведения сопряженных чисел в правой части уравнения (нормы).

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение10.10.2020, 14:08 
Заслуженный участник


12/08/10
1680
Valprim в сообщении #1486560 писал(а):
Но в теме binki показано, что переменная $A$ формируется из любого комплексного числа и тем самым участвуют все возможные сопряженные числа, с помощью которых и образуются произведения сопряженных чисел в правой части уравнения (нормы).

Это не было доказано. binki ссылается на какие то доказательства в книгах, но так и не сформулировал верное утверждение, доказательство котороого можно было бы найти.
В этой теме пока вообще нет доказательств.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение10.10.2020, 20:33 


22/03/20
102
Мне эта тема была интересной и я внимательно следил за дискуссией. На мой взгляд автор по существованию решений для уравнения $A^x=C^2+B^2$ привёл полное доказательство, и в дополнительных сведениях из других источников нет необходимости. Автор просто сообщил, что решение задачи для куба известно. По всем вопросам и примерам были даны исчерпывающие ответы.
По основному вопросу темы. Применение мнимого квадрата в доказательстве удачная и интересная находка. Ошибки здесь пока не обнаружил.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение10.10.2020, 21:22 
Заслуженный участник
Аватара пользователя


03/06/08
2337
МО

(Оффтоп)

Цитата:
Семён Семёныч!

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение12.10.2020, 07:24 


22/03/20
102

(Оффтоп)

поссмотрел на жирафа и сказал: "этного не может быть"

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение12.10.2020, 09:18 


19/04/14
321
Null в сообщении #1486395 писал(а):
Не является противоречием.

Уважаемый Null

$b_1=b \sqrt i =3m^2n - n^3;$ - не является противоречием, если числа (C,B) - комплексные.

Действительно. $A_1$ должно быть произведением сопряженных чисел. А чтобы справа появилась сумма квадратов, один из которых мнимый, $A_1$ - должно быть также комплексным.То есть для куба:

$A_1^3=(m^2+n^2i)^3=(m+ni \sqrt i)^3 (m-ni \sqrt i)^3; \qquad (19)$;

$(m+ni \sqrt i)^3 =(m^3-3mn^2i)+(3m^2n-n^3i)i \sqrt i ;\qquad (20)$;

$(m-ni \sqrt i)^3 =(m^3-3mn^2i)-(3m^2n-n^3i)i  \sqrt i ;\qquad (21)$

$(m+ni \sqrt i)^3 (m-ni \sqrt i)^3=(m^3-3mn^2i)^2+(3m^2n-n^3i)^2i ; \qquad (21.1) $

$C=(m^3-3mn^2i) ; \qquad (22)$

$B=(3m^2n-n^3i) \qquad (23)$

Как видим, в случае с мнимым квадратом, переменные (C,B) не могут принимать значения целых чисел.

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение12.10.2020, 11:38 
Заслуженный участник


12/08/10
1680
Null в сообщении #1486809 писал(а):
$A_1^3=(m^2+n^2i)^3$
Откуда вы это взяли? Оснований для этого нет.
binki в сообщении #1486800 писал(а):
$A_1$ должно быть произведением сопряженных чисел.
Докажите. Учтите что вам надо работать с кольцом $\mathbb{Z}[\sqrt i]$ , вряд ли тут работает основная теорема арифметики.
binki в сообщении #1486800 писал(а):
$A_1^3=(m^2+n^2i)^3=(m+ni \sqrt i)^3 (m-ni \sqrt i)^3; \qquad (19)$
$C=(m^3-3mn^2i) ; \qquad (22)$
$B=(3m^2n-n^3i) \qquad (23)$

Из $F_1+G_1i=F_2+G_2i$ не следует $F_1=F_2, G_1=G_2$, например $0+i\cdot i=-1+0 i $

 Профиль  
                  
 
 Re: Вариант подхода к общему доказательству гипотезы Била
Сообщение13.10.2020, 09:25 


19/04/14
321
Valprim в сообщении #1486547 писал(а):
Как я понял, суть доказательства ....,

Null в сообщении #1486809 писал(а):
Откуда вы это взяли?


Господа!

Valprim Вы правильно понимаете суть доква.
Null. Разъяснялось логическими выводами. А именно. Сумма двух квадратов, один из которых мнимый также определяется произведением комплексных сопряженных чисел. И эта сумма комплексное число. В связи с этим степень $A_1^x$ должна быть произведением сопряженных комплексных чисел и быть комплексным числом. Распишем (14)

$A^x=A_1^xA_2^x=(C^2+B^2i)(C^2-B^2 i);\qquad(14)$

$A_1^x=(m^2+n^2i)^x=(m+ni\sqrt i)^x(m-ni\sqrt i)^x;\qquad (14.1)$

$C^2+B^2i=(C+Bi\sqrt i)(C-Bi\sqrt i);\qquad (14.2)$

$(m+ni\sqrt i)^x(m-ni\sqrt i)^x=(C+Bi\sqrt i)(C-Bi\sqrt i)\qquad (14.3)$

Запись (14.3) единственна для найденного решения $C=(m^3-3mn^2i);,B=(3m^2n-n^3i)$. Действительно, если, например,

$(C+Bi\sqrt i)=(C_d+B_di\sqrt i)\qquad (14.4)$, где $C_d, B_d$ другие гауссовы числа, то

$i\sqrt i=\frac {C-C_d} {B_d-C} \qquad (14.5)$

Что невозможно, так как справа в (14.5) гауссово комплексное число. Так что в представленных формулах основная теорема арифметики выполняется при (C, B, m,n)>1

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 174 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 12  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group