2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 12, 13, 14, 15, 16, 17, 18 ... 44  След.
 
 Re: Гипотеза Римана
Сообщение04.12.2016, 17:06 


25/08/11

1074
Тоже согласен, но и у нас так и раньше было (редко) и сейчас (нередко). Не думаю, что в математике есть сильные нацразличия в этом плане, за остальное-не знаю.
В плане руководства всё так перевязано. Вот руководитель Джураева-грузин Векуа, а у того - американец Стефан Бергман, который зачем-то к нам тогда приехал. И тд.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение04.12.2016, 17:42 
Заслуженный участник
Аватара пользователя


31/01/14
11291
Hogtown

(Аффирмативные действия)

Насчет "за деньги" не знаю, насколько это было распространено. Но то, что очень часто среднеазиатские и казахские кандидатские и докторские пропускались, сильно не отвечая минимальным стандартам--это факт. Мне об этом рассказывали и те московские математики, которые писали положительные отзывы, и коллеги из этих же республик (с горечью). Результат: те, кто стали такими докторами и академиками, заняли административные должности, и стали продвигать своих собратьев по разуму и задвигать по настоящему талантливых (из местных ли, приезжих ли).

Разумеется, не бывает правил без исключений: мне известны случаи, когда люди скромных способностей осознавали свою ограниченность, но распознавали талантливую молодежь и продвигали её.

Аффирмативные действия не работают: не работали в СССР, не работают в США или Канаде. Они вредят в том числе и тем, кто должен был бы по идее от них выиграть.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение04.12.2016, 18:05 


25/08/11

1074
Red_Herring -Аффирмативные действия , что это?
Сложный вопрос. Я дружу с 4-5 московскими математиками, которые работают в ведущих вузах и занимают некоторые (скромные) административные должнеости, то есть на что-то небольшое могут влиять. Все они убеждены, что всё что делается в провинции и защищается это полная туфта, всё надо разогнать и защищать только в их вузах и советах. Не думаю, что это правильно. Я к тому, что не с нацвопросом это связано.
Пора завязывать, мы не при теме.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 11:35 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
shwedka в сообщении #1173750 писал(а):
http://viperson.ru/people/turkanov-igor-fedorovich
Цитата:
Генеральный директор ЗАО "Европейская Торговая Система Недвижимости"; родился 12 декабря 1968 г. в г. Богородске Горьковской (Нижегородской) области; окончил физико-математический интернат Nо 18 при МГУ им. Ломоносова в 1985 г., ВШК КГБ СССР (академия ФСБ) в 1990 г.; по окончании ВУЗа работал по специальности; после увольнения организовал собственное дело; член Президиума Независимой Организации "Гражданское общество" и Национального Гражданского Комитета по взаимодействию с правоохранительными, законодательными и судебными органами

Так что адреса всех оппонентов будут немедленно определены и меры по ликвидации возражений доказательству будут приняты.


ФМШ и ВШ КГБ это почти наверное 4й факультет, криптографы. А там математическое образование давалось (собственно, до 1960 это было "закрытое отделение мехмата МГУ"). Что, разумеется, не значит, что доказательство верно, но ожидать "перенесите Х в правую часть, подробности письмом!" (телеграмма некоего ферматиста в академию) не стоит, искать ошибку можно и нужно, но вряд ли это будет совсем просто. Хотя, конечно, вариант манифестации шизофрении, когда теряется связность рассуждений и выпадает набор слов, также не исключён.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 11:35 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
Убрал дубль

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 11:56 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Евгений Машеров, здравствуйте. У Вас здесь получился дубль сообщения.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 16:57 
Аватара пользователя


22/03/06
993
Евгений Машеров в сообщении #1182215 писал(а):
ВШ КГБ это почти наверное 4й факультет, криптографы


Когда-то (давно) мой одноклассник окончил это заведение. Он мне показал программу первых кусов анализа. На мой субъективный взгляд она показалась гораздо насыщеннее программы мехмата.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 21:03 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
Говорят, там алгебраисты сильные были. Во всяком случае, в списке публикаций тамошнего генерала много про группы
http://www.mathnet.ru/rus/person27747

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 17:48 
Заслуженный участник
Аватара пользователя


08/11/11
5940
 i  GAA:
Сообщения злостного клона уделены. Это сообщение содержит ответ на одно из таких сообщений.

Она не на немецком, а на французском, можно посмотреть здесь:

http://gallica.bnf.fr/ark:/12148/bpt6k3145g/f656.image

(и это скорее не статья, а то ли заметка, то ли письмо в редакцию).

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.06.2017, 12:03 
Заслуженный участник
Аватара пользователя


11/03/08
9874
Москва
1. Это не доказательство гипотезы Римана, а соображения относительно того, чем могла руководствоваться интуиция Римана. А именно тем, что нет оснований предпочитать числа с нечётным количеством делителей числам с чётным и наоборот, и, исходя из отсутствия предпочтения, можно ожидать, что наудачу выбранное число имеет равную вероятность для чётного и нечётного числа делителей. То есть это не доказательство на основе теории вероятностей, а некая "информация к размышлению", позволяющая сформулировать гипотезу, но не доказать её.
2. Количество успехов при бросании монеты будет иметь биномиальное распределение со средним $\frac N 2$ и дисперсией $\frac N 4$, то есть при миллионе бросков дисперсия будет 250000, а стандартное отклонение 500. В зависимости от выбранного нами коэффициента для "границы случайных отклонений" (две сигмы, три сигмы, пять сигм...) максимальное ожидаемое отклонение будет принято 1000, 1500, 2500 и т.п. Для отклонения от среднего в 50000, равного или превышающего 1000, вероятность такого около 5%.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.06.2017, 19:29 


13/05/14
476
g______d
g______d в сообщении #1222708 писал(а):
(и это скорее не статья, а то ли заметка, то ли письмо в редакцию).

Скорее это письмо в редакцию, потому, что она стоит в разделе с заголовком CORRESPONDANCE
(то есть ПЕРЕПИСКА)

(Оффтоп)

Вообще, интересную вещь Вы "раскопали".... Заголовок Comptes rendus de l'académie des sciences -- это Отчеты академии наук (французской, разумеется).
А Вы нашли это в Comptes rendus hebdomadaires des séances de l'Académie... то есть в Отчетах заседаний Академии наук.
Интересно как Вам это удалось? :!:
Но к сожалению там не текст, а ксерокопия. И хотя французский мне ближе, чем английский, переводить с картинки рука не поднимается. Да и зачем?
P.S. Рад встретить на форуме знатока француского

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.06.2017, 21:29 
Заслуженный участник
Аватара пользователя


08/11/11
5940
sqribner48 в сообщении #1223054 писал(а):
Заголовок Comptes rendus de l'académie des sciences -- это Отчеты академии наук (французской, разумеется).
А Вы нашли это в Comptes rendus hebdomadaires des séances de l'Académie... то есть в Отчетах заседаний Академии наук.


Это один и тот же журнал

https://en.wikipedia.org/wiki/Comptes_rendus

Цитата:
Comptes rendus was initially established in 1835 as Comptes rendus hebdomadaires des séances de l'Académie des Sciences.


(Оффтоп)

sqribner48 в сообщении #1223054 писал(а):
P.S. Рад встретить на форуме знатока француского


Французского я не знаю, но найти было не так сложно. Если набрать в гугле "Denjoy probablilistic argument", то вторым результатом будет книга Steuding, "Value-distribution of $L$-functions", в которой есть раздел про этот аргумент со ссылкой на работу Данжуа. В mathscinet этой работы нет, но в Zentrablatt она есть (опять же, выскакивает при поиске названия статьи). Там есть название журнала (C. R. -- Comptes Rendus), год и страница. Журнал достаточно известный, про него есть статья в википедии (см. ссылку выше), в которой есть линк на сканы всех номеров.

Умеючи, весь процесс поиска занимает минут 5.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.06.2017, 23:35 


13/05/14
476
g______d
Большое спасибо.

(Оффтоп)

Вашу методику поиска приму для себя к сведению.
Правда допуска у меня к mathscinet нет и это сильно затрудняет поиск.
Wiki я смотрел сразу же после прочтения Вашего первого сообщения.
Понял что с 1835 года журнал получил другое название.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение13.06.2017, 17:01 


20/03/14
12041
 i  Оффтоп отделен в «Невероятная вероятность»

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение20.07.2017, 14:39 


24/03/09
505
Минск
А может ли такое быть, что вот, с нынешней системой аксиом во всей математике,
ГР верна но недоказуема? (если она неверна, то "неверность" точно может быть, доказана - достаточно найти контрпример).
Но наоборот, если верна, то может и не существовать в принципе в природе доказательства (а перебрать все нули тоже не представляется
возможным, т.к. их бесконечное количество).

Тогда возможно ли, введение какой то принципиально новой аксиомы в математику, к примеру для того чтобы ее доказать?
Или математика уже настолько хорошо изучена, что новые аксиомы никогда вводиться не будут?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 655 ]  На страницу Пред.  1 ... 12, 13, 14, 15, 16, 17, 18 ... 44  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group