2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
01/01/18 20:50 UTC: Перешли на HTTPS в тестовом режиме. О проблемах пишите в ЛС cepesh.





Начать новую тему Ответить на тему На страницу Пред.  1 ... 14, 15, 16, 17, 18
 
 Re: Гипотеза Римана
Сообщение25.07.2017, 14:50 
Модератор


19/10/15
1113
 !  Обсуждение отрицания формулировки с $O(n^{\frac12 + \varepsilon})$ перенесено в ПРР(М): Отрицание утверждения с O-большим
vicvolf, прошу не обсуждать в этой теме простые вопросы о нотации и простейших логических преобразованиях, не относящиеся к специфике гипотезы Римана.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.08.2017, 11:10 


21/05/16
1042
Аделаида
Прочел в Википедии, что равенство $\int\limits_{0}^{\infty}\frac{(1-12t^2)}{(1+4t^2)^3}\int\limits_{1/2}^{\infty}\log|\zeta(\sigma+i t)|\,d\sigma \,dt=\frac{\pi(3-\gamma)}{32}$ эквивалетно гипотезе Римана.
Просьба дать ссылку на доказательство эквивалентности.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.08.2017, 12:20 
Заслуженный участник
Аватара пользователя


09/09/14
4894
kotenok gav в сообщении #1242089 писал(а):
Прочел в Википедии ...
Просьба дать ссылку на доказательство эквивалентности.
Приведите ссылку, где Вы нашли формулу. Надеюсь, там есть ссылка на источник -- тогда Вашу просьбу будет выполнить намного проще.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.08.2017, 12:49 


21/05/16
1042
Аделаида
Вот, ссылки на источник там нет.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.08.2017, 13:26 
Заслуженный участник


31/12/05
1048
Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 3, pp. 422–423, March, 1995
V.V.Volchkov, ON AN EQUALITY EQUIVALENT TO THE RIEMANN HYPOTHESIS

https://link.springer.com/article/10.1007/BF01056314

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.08.2017, 13:47 


21/05/16
1042
Аделаида
А как эту статью закачать?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.08.2017, 14:29 
Заслуженный участник
Аватара пользователя


09/09/14
4894
Оставлю, пожалуй, в этой теме интересно структурированную подборку эквивалентных ГР формулировок.
И эту ссылку тоже (здесь и нашлась предыдущая).

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение22.08.2017, 05:35 
Аватара пользователя


12/10/16
205
Almaty, Kazakhstan

(Оффтоп)

kotenok gav в сообщении #1242156 писал(а):
А как эту статью закачать?

если пользуетесь гугл хромом, то у неё есть меню печать-сохранить как pdf, также в плей маркете есть прога offline browser которая сохраняет страницу как есть.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение22.08.2017, 05:49 


21/05/16
1042
Аделаида

(Оффтоп)

Нет, я там просто не вижу эту статью.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение22.08.2017, 13:16 


21/05/16
1042
Аделаида
kotenok gav в сообщении #1242156 писал(а):
А как эту статью закачать?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.10.2017, 04:35 
Модератор


13/07/17
31
 !  Очередной опус от vicvolf перенесён в тему "Оценка функции Мертенса".

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение21.12.2017, 17:15 


24/03/09
214
Минск
kotenok gav в сообщении #1242089 писал(а):
Прочел в Википедии, что равенство $\int\limits_{0}^{\infty}\frac{(1-12t^2)}{(1+4t^2)^3}\int\limits_{1/2}^{\infty}\log|\zeta(\sigma+i t)|\,d\sigma \,dt=\frac{\pi(3-\gamma)}{32}$ эквивалетно гипотезе Римана.
Просьба дать ссылку на доказательство эквивалентности.


И каков вывод - действительно ли это равенство эквивалентно классической гипотезе Римана?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 267 ]  На страницу Пред.  1 ... 14, 15, 16, 17, 18

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group