2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки





Начать новую тему Ответить на тему На страницу Пред.  1 ... 12, 13, 14, 15, 16, 17, 18  След.
 
 Re: Гипотеза Римана
Сообщение04.12.2016, 17:06 


25/08/11
1060
Тоже согласен, но и у нас так и раньше было (редко) и сейчас (нередко). Не думаю, что в математике есть сильные нацразличия в этом плане, за остальное-не знаю.
В плане руководства всё так перевязано. Вот руководитель Джураева-грузин Векуа, а у того - американец Стефан Бергман, который зачем-то к нам тогда приехал. И тд.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение04.12.2016, 17:42 
Заслуженный участник
Аватара пользователя


31/01/14
6875
Hogtown

(Аффирмативные действия)

Насчет "за деньги" не знаю, насколько это было распространено. Но то, что очень часто среднеазиатские и казахские кандидатские и докторские пропускались, сильно не отвечая минимальным стандартам--это факт. Мне об этом рассказывали и те московские математики, которые писали положительные отзывы, и коллеги из этих же республик (с горечью). Результат: те, кто стали такими докторами и академиками, заняли административные должности, и стали продвигать своих собратьев по разуму и задвигать по настоящему талантливых (из местных ли, приезжих ли).

Разумеется, не бывает правил без исключений: мне известны случаи, когда люди скромных способностей осознавали свою ограниченность, но распознавали талантливую молодежь и продвигали её.

Аффирмативные действия не работают: не работали в СССР, не работают в США или Канаде. Они вредят в том числе и тем, кто должен был бы по идее от них выиграть.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение04.12.2016, 18:05 


25/08/11
1060
Red_Herring -Аффирмативные действия , что это?
Сложный вопрос. Я дружу с 4-5 московскими математиками, которые работают в ведущих вузах и занимают некоторые (скромные) административные должнеости, то есть на что-то небольшое могут влиять. Все они убеждены, что всё что делается в провинции и защищается это полная туфта, всё надо разогнать и защищать только в их вузах и советах. Не думаю, что это правильно. Я к тому, что не с нацвопросом это связано.
Пора завязывать, мы не при теме.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 11:35 
Заслуженный участник
Аватара пользователя


11/03/08
5293
Москва
shwedka в сообщении #1173750 писал(а):
http://viperson.ru/people/turkanov-igor-fedorovich
Цитата:
Генеральный директор ЗАО "Европейская Торговая Система Недвижимости"; родился 12 декабря 1968 г. в г. Богородске Горьковской (Нижегородской) области; окончил физико-математический интернат Nо 18 при МГУ им. Ломоносова в 1985 г., ВШК КГБ СССР (академия ФСБ) в 1990 г.; по окончании ВУЗа работал по специальности; после увольнения организовал собственное дело; член Президиума Независимой Организации "Гражданское общество" и Национального Гражданского Комитета по взаимодействию с правоохранительными, законодательными и судебными органами

Так что адреса всех оппонентов будут немедленно определены и меры по ликвидации возражений доказательству будут приняты.


ФМШ и ВШ КГБ это почти наверное 4й факультет, криптографы. А там математическое образование давалось (собственно, до 1960 это было "закрытое отделение мехмата МГУ"). Что, разумеется, не значит, что доказательство верно, но ожидать "перенесите Х в правую часть, подробности письмом!" (телеграмма некоего ферматиста в академию) не стоит, искать ошибку можно и нужно, но вряд ли это будет совсем просто. Хотя, конечно, вариант манифестации шизофрении, когда теряется связность рассуждений и выпадает набор слов, также не исключён.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 11:35 
Заслуженный участник
Аватара пользователя


11/03/08
5293
Москва
Убрал дубль

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 11:56 
Заслуженный участник
Аватара пользователя


01/03/06
12813
Москва
Евгений Машеров, здравствуйте. У Вас здесь получился дубль сообщения.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 16:57 
Аватара пользователя


22/03/06
919
Евгений Машеров в сообщении #1182215 писал(а):
ВШ КГБ это почти наверное 4й факультет, криптографы


Когда-то (давно) мой одноклассник окончил это заведение. Он мне показал программу первых кусов анализа. На мой субъективный взгляд она показалась гораздо насыщеннее программы мехмата.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.01.2017, 21:03 
Заслуженный участник
Аватара пользователя


11/03/08
5293
Москва
Говорят, там алгебраисты сильные были. Во всяком случае, в списке публикаций тамошнего генерала много про группы
http://www.mathnet.ru/rus/person27747

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 01:07 


13/02/17

317
Varanasi
Извиняюсь, может быть не совсем в тему, но вот что пишет Дербишир в своей "Простой одержимости":

Джон Дербишир писал(а):
Имеются два непрямых подхода. Например, есть наша теорема 15.2 о функции M, получаемой накапливанием значений мебиусовой функции . Эта теорема, как было сказано, в точности эквивалентна Гипотезе. Специалист по аналитической теории чисел Деннис Хеджхал из университета Миннесоты использует этот подход, чтобы познакомить с Гипотезой Римана нематематическую аудиторию и при этом избежать введения комплексных чисел. Вот как, по его словам (я пересказываю, а не цитирую), выражается ГР.
Выпишем все натуральные числа, начиная с 2. Под каждым числом запишем его простые делители. Затем, игнорируя всякое число, среди делителей которого есть квадрат (или любая более высокая степень, которая по необходимости содержит в себе и квадрат), будем двигаться вдоль чисел, отмечая как «орел» каждое число с четным числом простых делителей и как «решку» — с нечетным. Получаем бесконечную строку из орлов и решек — нечто вроде того, что возникает в опыте по подбрасыванию монеты:
Далее, из классической теории вероятностей хорошо известно, чего ожидать от подбрасывания монеты большое число раз N. В среднем будет $\frac{1}{2N}$ орлов и $\frac{1}{2N}$ решек. Но, разумеется, далеко не всегда будут получаться в точности эти значения. Предположим, мы вычли число орлов из числа решек (или наоборот, в зависимости оттого, какое из них больше). Что мы ожидаем по поводу величины этого избытка? В среднем это будет $N$, т.е. $N^{1/2}$. Это было известно уже 300 лет назад, во времена Якоба Бернулли. Если подбрасывать «честную» монету миллион раз, то в среднем получится избыток в тысячу орлов (или решек). Может выйти больше или меньше — но в среднем, коль скоро вы продолжаете подбрасывать монету, т.е. при стремлении $N$ к бесконечности, — величина избытка растет в определенном темпе: не быстрее, чем $N^{1/2+\varepsilon}$ для любого сколь угодно малого числа . Прямо как у нас в теореме 15.2!
На самом деле теорема 15.2, которая эквивалентна ГР, утверждает, что функция M растет точно так же, как избыток в опыте по подбрасыванию монеты. По-другому утверждение теоремы можно выразить так: свободное от квадратов число является орлом или решкой — т.е. имеет четное или нечетное число простых делителей — с вероятностью 50:50. Такое положение дел выглядит довольно правдоподобным и может на самом деле оказаться верным. Если вы сможете доказать, что это утверждение действительно верно, то вы тем самым докажете и ГР.[185]



185
Официально этот подход называется «вероятностная интерпретация Данжуа», по имени французского аналитика Арно Данжуа (1884-1974). Данжуа был профессором математики в Парижском университете с 1922 по 1955 г.



Попытался найти более подробную информацию по "Вероятностной интерпретации Данжуа", но безрезультатно. Известна ли эта интерпретация кому- нибудь кроме Дербишира?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 03:10 


13/02/17

317
Varanasi
И вообще, не думают ли уважаемые участники, что выделенное в цитате жирным шрифтом вовсе не эквивалентно ГР, т.е., что Дербишир заблуждается?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 06:56 
Заслуженный участник
Аватара пользователя


09/02/09
1935
Минск, Беларусь
Об этих интерпретациях (через оценку отклонений различных "накапливающих" функций) хорошо известно, но вот о том, что они названы именем Данжуа, слышу впервые.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 08:45 
Аватара пользователя


11/06/12
7187
Минск
Aether в сообщении #1222596 писал(а):
В среднем будет $\frac{1}{2N}$ орлов и $\frac{1}{2N}$ решек.
Надеюсь, там не написано именно так?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 09:15 
Заслуженный участник
Аватара пользователя


08/11/11
4278
Я так понимаю, что это эта статья

https://www.zentralblatt-math.org/jahrb ... 3A02555898

но текст мне лень искать.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 11:02 


13/02/17

317
Varanasi
Aritaborian в сообщении #1222619 писал(а):
Aether в сообщении #1222596 писал(а):
В среднем будет $\frac{1}{2N}$ орлов и $\frac{1}{2N}$ решек.
Надеюсь, там не написано именно так?


Да, конечно, N в числителе.

-- 06.06.2017, 12:22 --

В ГР рассматривается функция Мертенса, а Дербишир каким-то образом сводит ГР к равенству вероятности взятого наугад числа быть "орлом" или "решекой", что мне кажется неверным. Или я чего-то не понимаю? Как он совершает этот переход?

-- 06.06.2017, 12:33 --

И насчёт того, что во времена Якоба Бернулли было известно, что величина избытка в среднем равна $ N^{\frac{1}{2}}$ - так ли это?
Т.е. что на миллион испытаний честной монеты отклонение в среднем составит тысячу?

-- 06.06.2017, 12:54 --

g______d в сообщении #1222623 писал(а):
Я так понимаю, что это эта статья

https://www.zentralblatt-math.org/jahrb ... 3A02555898

но текст мне лень искать.


К сожалению статью не нашёл, да и на немецком скорее всего не разберусь с ней полноценно.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение06.06.2017, 17:48 
Заслуженный участник
Аватара пользователя


08/11/11
4278
Она не на немецком, а на французском, можно посмотреть здесь:

http://gallica.bnf.fr/ark:/12148/bpt6k3145g/f656.image

(и это скорее не статья, а то ли заметка, то ли письмо в редакцию).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 269 ]  На страницу Пред.  1 ... 12, 13, 14, 15, 16, 17, 18  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group