Понимание использует принципиальное сходство между паттернами в механизмах распознавания сигналов мозгом и законами природы, естественно сформировавшееся в процессе эволюции мозга. Оно позволяет вскрывать ту самую "колмогоровскую сложность".
Мне все эти истории при волшебный навык вскрытия тайных паттернов в последнее время кажутся дико подозрительными. Как и фигура гения. Мне процесс решения конкретной задачи (при наблюдении исключительно за собой, так что выборка не очень, соглашусь) видится так: сначала пробуешь все методы (в широком смысле), которые можешь вспомнить, потом пытаешься внести случайную флуктуацию почти "наугад", скажем как-то пошевелить условия, что-то достроить, посмотреть на другой аспект задачи, а потом снова пробуешь все методы, что можешь вспомнить. Если какой-то метод заходит "достаточно далеко" то на него имеет смысл потратить больше времени. Если сил больше не остаётся - пытаешься узнать новые методы. Конечно, у некоторых людей это получается лучше и быстрее, у некоторых хуже, некоторые методы требуют попытки построения отдельной теории или концептуализации старой или какой-то аналогии, но в общем и целом это всё равно оптимизированный перебор. Тут кстати аналогия с шахматами весьма удачна: конечно можно много говорить об интуиции, шахматном зрении, позиционированнии, но всё равно всё это упирается в оптимизированный перебор. А гением называют постфактум, когда кто-то таки смог решить задачу, не значит конечно, что он этого звания не заслуживает и на его месте мог быть любой, но всё-таки зачастую тут есть серьезный элемент везения.
Я вот не знаю как там насчёт сложности, но если бы всё дело было исключительно в запоминании, то уже давно компьютеры ставили бы задачи и решали их без помощи человека. У них с памятью немного лучше, чем у людей. Человек не просто знает формулу, он ещё и прилагает некоторые умственные усилия (обычно), чтобы решить, что, когда и как использовать. Это больше, чем запоминание, мнемоника и т.д.
Про постановки задач: сложнее, тут социальный элемент неустраним. То есть какие задачи, скажем, интересны в математике? Ну, которые мэтры посчитали интересными, они сами, конечно, могут это как угодно обосновывать: хоть историческим контекстом, хоть полезностью для физики и криптографии, хоть чем, но всё-таки это мода. А то, что компьютеры до сих пор не доказывают теоремы, то мне кажется, что дело как раз в ужасной формализации и ужасном языке. То есть когда простое рассуждение может быть формализовано только в несколько сотен тысяч тактов дедуктивной системы - это не дело никак, но как только (и если) смогут всё формализовать нормально, то станет видно, что компьютеры могут доказывать теоремы лучше людей.
Про знание формулы и когда использовать; естественно: он ещё и перебирает (оптимизировано) все возможные формулы, и пытается их использовать. Окей, дело не только в памяти, но и в частоте (хотя количество убитого времени может скомпенсировать частоту).