2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 13  След.
 
 Re: Теорема Ферма (частные случаи)
Сообщение22.04.2016, 14:50 
Аватара пользователя


15/09/13
391
г. Ставрополь
Следовательно, в выведенном из системы (7-8) $$\begin{cases}a^3+b^3=c^3\\a+b=c+2k\end{cases}$$ равенстве $c^3-(a^3+b^3)=3(a+b)(ab-2kc)-8k^3$(9) левая и правая части не могут быть равными нулю ни при $k=x=1$, ни при любых натуральных $x=k$, потому что являются одновременно общими (k-ми) членами (или поочередно «остатками» из первых (для $k=x=1$) или общих членов) расходящихся рядов. А это значит, что в $a^3+b^3=c^3$ не существует одновременно натуральных $a,b,c$. Что и требовалось доказать.

-- 22.04.2016, 15:18 --

$$\begin{cases}[c^3-(a^3+b^3)]k^3\\c^3-(a^3+b^3)\\a+b=c+2k\end{cases}$$
$$\begin{cases}3(a+b)(ab-2c)k^3-8k^3\\3(c+2)(b-2)(a-2)-8\\a+b=c+2k\end{cases}$$
$$\begin{cases}c^3-(a^3+b^3)\\c^3-(a^3+b^3)\\a+b=c+2x\end{cases}$$
$$\begin{cases}3(c+2x)(b-2x)(a-2x)-8x^3\\3(a+b)(ab-2c)-8\\a+b=c+2x\end{cases}$$
$$\begin{cases}3(a+b)(ab-2xc)-8x^3\\3(c+2)(b-2)(a-2)-8\\a+b=c+2x\end{cases}$$

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение23.04.2016, 06:38 


27/03/12
449
г. новосибирск
Уважаемый vxv! А вы проверяли правую часть (9), если $2k = a_1b_1c_1$, для 2 случая ВТФ вариант, когда $(c,3) = 3$, где $c-b =a_1^3$, $c-a =b_1^3$ и $3(a + b) = c_1^3$. В этом случае правая часть (9) равна нулю.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение23.04.2016, 13:32 
Аватара пользователя


15/09/13
391
г. Ставрополь
vasili в сообщении #1117638 писал(а):
В этом случае правая часть (9) равна нулю.

Уважаемый vasili! Не проверял за ненадобностью. В (9) и правая, и левая части равенства не могут быть равны нулю для $a,b,c$ из области допустимых значений для ВТФ (и вы это знаете), потому что в случае расходящегося ряда (хоть «бесконечно спускаться» от одного члена к другому из «бесконечности» до его первого члена, хоть, наоборот, поочередно «бесконечно подниматься» от меньшего члена к большему) результат для $c^3-(a^3+b^3)$ всегда будет одним – не нулевым.
Просто к сведению: В отличие от числовых рядов членами функционального ряда являются функции. Ряд, составленный из функций одной и той же переменной х: называется функциональным.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение03.05.2016, 13:14 
Аватара пользователя


15/09/13
391
г. Ставрополь
vxv в сообщении #764041 писал(а):
А чтобы доказать теорему,
достаточно доказать ее для $n=4$ и всех простых нечетных значений $n$, т.к. они образуют все остальные показатели степеней.

Для степени $n=4$ (и степеней кратным четырем): $$c^4-(a^4+b^4)=2(ab-2xc)(ab+2xc)-2^4x^4$$(9.1) или $$c^4-(a^4+b^4)=2(b-2x)(b+2x)(a-2x)(a+2x)-2^4x^4$$(9.2) левая и правая части уравнения представлены (как и в (9) для степени $n=3$) общими членами расходящихся рядов (или взаимными «остатками» из этих общих членов), в которых натуральные $a,b,c$ не являются взаимно простыми для $x=k>1$, а потому могут быть сокращены до значений при $x=k=1$ (т.е. до значений первого члена ряда). А выражение $2(ab-2c)(ab+2c)=2^4$, как и (13) для $n=3$, не является равенством (что определяется простой подстановкой минимальных значений натуральных $a,b,c$).

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение03.05.2016, 15:10 
Аватара пользователя


15/09/13
391
г. Ставрополь
vxv в сообщении #764041 писал(а):
алгоритм доказательства применим для простых значений $n=5,7,...$ и кратным им, поскольку натуральное составное число $2^n$ в правой части выражения, как и в (13), не имеет при разложении нечетных множителей, которые выделяются в его левой части (см. треугольник Паскаля).

Таким образом, теорема Ферма (с учетом следствий) доказана здесь в полном объеме и в нескольких взаимодополняющих вариантах. (ИМХО)

P.S. Ряд натуральных чисел, в качестве ОДЗ, дополнительно определяется мною, как частный случай числовой последовательности с общим множителем ее элементов (размерным коэффициентом) равным $k$ или $1/k$. Для натурального ряда $k=1$.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение27.07.2016, 21:01 
Аватара пользователя


15/09/13
391
г. Ставрополь
А тогда
$\sum\limits_{n=3}^{\infty}|a^n+b^n-c^n|$
- расходящийся ряд.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение21.08.2016, 11:59 
Аватара пользователя


15/09/13
391
г. Ставрополь
Разложение на отдельные слагаемые целых неотрицательных степеней сумм переменных в доказательстве теоремы весьма значительны по ширине для «записи на полях». А сделать необходимые обобщения вполне достаточно и коэффициентов из треугольника Паскаля.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение21.08.2016, 12:36 


21/11/10
546
vxv в сообщении #1140502 писал(а):
А тогда
$\sum\limits_{n=3}^{\infty}|a^n+b^n-c^n|$
- расходящийся ряд.

Это когда каждый последующий член больше предыдущего!?
vxv в сообщении #1145701 писал(а):
А сделать необходимые обобщения вполне достаточно и коэффициентов из треугольника Паскаля.

А бином Ньютона и биномиальные коэффициенты как же?
Уважаемый vxv!
Дайте пжлста словесную формулу Вашего подхода к ВТФ, по возможности, с использованием минимального количества формул.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение21.08.2016, 17:30 
Аватара пользователя


15/09/13
391
г. Ставрополь
Уважаемый, ishhan
1.Это когда общий ($n$-й) член ряда $|a^n+b^n-c^n|$ не стремится к нулю.
2.Применительно к доказательству для любых достаточно больших простых значений показателей степени $n$ (например, $n=17$, $m=2k$ и $k=1$) сразу, пользуясь биномиальными коэффициентами из треугольника Паскаля, можно кратко записать:
$(a+b)^17=(c+2)^17$
$[c^17-(a^17+b^17)]=17(………)-2^17$,
где
$|17(………)-2^17|$
однозначно, не равно нулю для натуральных $a$, $b$, $c$ из ОДЗ – натуральный ряд.
ИМХО.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение21.08.2016, 17:57 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
vxv в сообщении #1140502 писал(а):
А тогда
$\sum\limits_{n=3}^{\infty}|a^n+b^n-c^n|$
- расходящийся ряд.

ishhan в сообщении #1145705 писал(а):
vxv в сообщении #1140502

писал(а):
А тогда
$\sum\limits_{n=3}^{\infty}|a^n+b^n-c^n|$
- расходящийся ряд.
Это когда каждый последующий член больше предыдущего!?


vxv в сообщении #1145737 писал(а):
Уважаемый, ishhan
1.Это когда общий ($n$-й) член ряда $|a^n+b^n-c^n|$ не стремится к нулю.



Ну и знатоки собрались!
Кто из вас первым доберется до учебника и найдет правильный ответ?

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение21.08.2016, 18:34 
Заслуженный участник
Аватара пользователя


20/08/14
8603

(Вульгарность)

ishhan в сообщении #1145705 писал(а):
vxv в сообщении #1140502 писал(а):
А тогда
$\sum\limits_{n=3}^{\infty}|a^n+b^n-c^n|$
- расходящийся ряд.

Это когда каждый последующий член больше предыдущего!?
"Это ваши девичьи мечты" - обронил пожилой профессор.

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение21.08.2016, 18:48 


21/11/10
546
Уважаемый vxv!

vxv в сообщении #1145737 писал(а):
2.Применительно к доказательству для любых достаточно больших простых значений показателей степени $n$ (например, $n=17$, $m=2k$ и $k=1$)

А для показателя n=19 проходит?

Уважаемая shwedka!
Спасибо от всех нас за Вашу беспощадную критику по вопросам связанным с ВТФ.
Великодушно прошу простить за юмор :?

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение25.08.2016, 13:42 
Аватара пользователя


15/09/13
391
г. Ставрополь
ishhan в сообщении #1145753 писал(а):
А для показателя n=19 проходит?

Уважаемый ishhan
Спасибо! Из-за беспечности, 75582/19 – ошеломляющий капкан…, но пока не смертельный для частных случаев $n=3$..., да и общего доказательства ТФ в этой теме (потому что «наступаю» с нескольких направлений одновременно).
$\sum\limits_{n=3}^{\infty}|a^n+b^n-c^n|$
Каждый член этого ряда в нашем случае представляет из себя первый член другого расходящегося ряда (а потому есть возможность нивелировать «аномалии» треугольника Паскаля).

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение05.09.2016, 10:36 
Аватара пользователя


15/09/13
391
г. Ставрополь
… и из чего следует важный логический вывод (или, если кто-то пока настаивает, предположение) о том, что ряд
$\sum\limits_{n=3}^{\infty}c^n-(a^n+b^n)$
не может быть знакопеременным и представляет из себя «классический» расходящийся ряд…

 Профиль  
                  
 
 Re: Теорема Ферма (частные случаи)
Сообщение05.09.2016, 20:00 


10/08/11
671
vxv в сообщении #1149182 писал(а):
… и из чего следует важный логический вывод (или, если кто-то пока настаивает, предположение) о том, что ряд
$\sum\limits_{n=3}^{\infty}c^n-(a^n+b^n)$
не может быть знакопеременным и представляет из себя «классический» расходящийся ряд…

Было бы странным, если бы указанная сумма последовательностей по выражению
с тремя степенями не увеличивалась с увеличением показателя (верхнего предела суммирования). Поэтому это утверждение ничего не доказывает.
Пусть существует решение УФ $(a,b,c)$ подставляем все Ваши выкладки и утверждаем, что такого решения не существует. При этом совершенно не важно, что за этими буквами скрывается. У Вас нет критерия разграничивающего целые и иррациональные числа. Коэффициенты Паскаля применимы к любым числам.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 189 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 13  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group