Что такое КП (критические полосы) не помешает ещё раз подробно вспомнить.
Введение в критическую полосуКогда две синусоиды удовлетворительно разделяются по частоте, они обрабатывается улиткой как отдельные сущности, с воспринятой громкостью одной синусоиды, незатронутой другой. Когда их частоты достаточно близки друг к другу, два синусоидальных сигнала взаимодействуют, маскируя, или уменьшая, таким образом, амплитуду друг друга внутри улитки [Max Mathews, ‘The Ear and How it works,’ (Perry R. Cook, Editor) Music, Cognition and Computerized Sound (Cambridge: MIT Press, 1999), p. 9].
Для каждого слухового нейрона внутри улитки, можно вычертить кривую настройки, или график минимального уровня звукового давления для нейральной реакции в сравнении с частотой. Характеристическая частота (ХЧ) есть частота, на которой такой нейрон может быть стимулирован с минимумом амплитуды. Отклонение от ХЧ либо выше, либо ниже, причинит соответствующее уменьшение на выходе исследуемого нейрона.
Психофизическая кривая настройки (ПКН), аналогично есть модель к нейральной кривой настройки, полученная через испытания, в которых слушатель прослушивает сначала тон, чья частота и амплитуда предопределена, и затем второй тон, или masker. Уровень, на котором masker маскирует тон, затем зарегистрирован, чтобы установить общую форму слухового фильтра.
Результаты указывают, что внутреннее ухо есть набор перекрывающихся линейных полосовых фильтров. Комбинация двух или трех фильтров, известных вместе как Roex [Rounded exponential] фильтр, может использоваться для моделирования полосы улитки для данной частоты [Patterson and Moore, 'Auditory filters and excitation patterns as representations of frequency resolution,’ (Brian C. J. Moore, Editor) Frequency Selectivity in Hearing (London: Academic Press, 1986), p. 136-7]. Для отдельной синусоиды, форма слухового фильтра, как обозначено пороговыми кривыми в различных частотах, является экспоненциальной [Patterson and Moore, Op. Cit, p. 123]. Moore характеризует форму слухового фильтра как округленную показательную функцию с полосой пропускания, чьи окраины близки к экспоненциальным, но чья вершина сглажена:
Цитата:
Для молодого нормального слушателя, среднего уровня, и частоты центра 1.0 КГЦ, эквивалентная прямоугольная ширина полосы фильтра есть приблизительно 130 Гц, и она приблизительно симметрична на линейной шкале частот. Фильтр применяет около 25dB ослабления [на] 300 Гц выше или ниже частоты сигнала [Patterson and Moore, Op. Cit, p. 173].
В музыкальных терминах,
размер тонального окна, в котором синус-компоненты одного или большего количества тонов взаимодействуют есть приблизительно малая терция. Размер критической полосы
увеличится, по мере снижения к частотам более низких клавиш фортепьяно. Дополнительно, амплитуда заставляет размер критической полосы увеличиваться, особенно в низшем регистре.
(Английский)
Introduction to Critical Bandwidth When two sinusoids are adequately separated in frequency, they are processed by the cochlea as distinct entities, with the perceived loudness of one sinusoid being unaffected by the other. In the event that their frequencies are sufficiently close to one another, the two sinusoidal signals interact, thus masking, or diminishing the amplitude of, one another within the cochlea [Max Mathews, ‘The Ear and How it works,’ (Perry R. Cook, Editor) Music, Cognition and Computerized Sound (Cambridge: MIT Press, 1999), p. 9].
For each auditory neuron within the cochlea, a tuning curve, or graph of minimum sound pressure level for neural response versus frequency, can be drawn. The characteristic frequency (CF) is the frequency at which such a neuron can be stimulated with a minimum of amplitude. Deviating from the CF either above or below will cause a corresponding decrease in the output from the neuron being examined.
The psychophysical tuning curve (PTC), similar is shape to the neural tuning curve, is obtained through tests in which the listener hears first a tone whose frequency and amplitude are predetermined, and then a second tone, or masker. The level at which the masker masks the tone is then recorded in order to determine the overall shape of the auditory filter.
Results indicate that the inner ear is a bank of overlapping, linear bandpass filters. A combination of two or three filters, known collectively as a Roex filter, can be used to model the bandwidth of the cochlea for a given frequency [Patterson and Moore, 'Auditory filters and excitation patterns as representations of frequency resolution,’ (Brian C. J. Moore, Editor) Frequency Selectivity in Hearing (London: Academic Press, 1986), p. 136-7]. For a single sinusoid, the shape of the auditory filter, as indicated by threshold curves at various frequencies, is exponential [Patterson and Moore, Op. Cit, p. 123]. Moore characterizes the shape of the auditory filter as a rounded exponential function with a passband whose skirts are close to exponential but whose top is flattened:
Цитата:
For a young normal listener, a moderate level, and a 1.0 KHz centre frequency, the equivalent rectangular bandwidth of the filter is about 130 Hz and it is approximately symmetrical on a linear frequency scale. The filter applies an attenuation of about 25dB 300 Hz above or below the signal frequency [Patterson and Moore, Op. Cit, p. 173].
In musical terms,
the size of the tonal window in which the sine components of one or more tones interact is approximately a minor third. The size of a critical band
will increase as it descends to the frequencies of the lower keys of the piano. Additionally, amplitude causes the size of the critical band to augment, especially in the lower register.