У меня в тексте доказательстве опечатки, исправляю:
Итак, Ферма утверждал, что уравнение

.
не имеет рациональных решений . Попробуем доказать обратное.
Предположим, что такое решение существует,
при

,

,

, где

,

,

- целые положительные взаимно простые числа и

, то есть

.
1.1.

, где

- целое положительное число

, где

- целое положительное число.
1.2.

,

Перемножаем левые и правые части, получаем:

,
![$a(ad-p)+b(bd-p)=c(cd-p)
1.3. [math]$a(ad-p)+b(bd-p)=c(cd-p)$ $a(ad-p)+b(bd-p)=c(cd-p)
1.3. [math]$a(ad-p)+b(bd-p)=c(cd-p)$](https://dxdy-01.korotkov.co.uk/f/8/e/7/8e7dec3054f89c578dfeda83b6883b4982.png)
,

(п.1.1). Перемножаем левые и правые части, получаем:

, следовательно,

.
2.1.1 функция

в точках

и

принимает одинаковые значения разных знаков и она является целой рациональной функцией, непрерывна и определена при всех значениях

, следовательно, между

и

существует точка ( назовем ее

, значение функции в которой равно

.
2.1.3 Найдем все точки, значение функции в которых равно нулю.

.

или


, отсюда

или

.
Поскольку

,

,

.
3.1.1 поскольку
функция

является целой рациональной функцией, непрерывна и определена при всех значениях

и ее значение равно нулю в точках 0, h и с,
существует три точки, в которых она принимает одинаковые отрицательные значения (a, a' и a'') и три , в которых она принимает одинаковые положительные значения (b, b' и b'').
И, следовательно, (a, b), (a', b') и (a'', b'') попарно являются решениями системы уравнений
1.

.
2.

3.

, то есть,

, и

.
4.1

.
отсюда

. И

- целое число.
Но это невозможно, поскольку

не может быть целым числом.
А значит, наше первоначальное предположение о существовании решения

было неверным, уравнение

не имеет решений в рациональных числах.
Теорема доказана.
По этому же принципу она доказывается для всех степеней, больше 2