Много раз поднимались подобные темы на dxdy, см. темы-указатели: Литература по математике, Материалы всем желающим выучить математику с нуля, а можно сразу посмотреть прилепленные темы: Лучший учебник по математическому анализу [литература]; Книги по математическому анализу и другим дисциплинам; Задачники по математическому анализу.
Были и темы для программистов: Математика для программиста, Какие книги для математической базы программиста и др.
Посмотрев, убеждаемся, что достаточно подробного сравнения и пояснений в этих темах не найти. В лучшем случае найдёте удачную ссылку на полезный Вам учебник. Поэтому позволю себе высказать своё личное мнение по поводу некоторых начальных курсов анализа. Для освоения начальных курсов анализа долго повторять школьный курс не стоит. По ходу параллельного изучения начал анализа, аналитической геометрии и алгебры можно будет повторять материал школьного курса.
Самым разумным и возможно единственным способом получения образования является поступление на заочную форму обучения, если нет возможности учиться на дневной. Самостоятельное изучение книг по анализу уместно в основном для повторения или углубления в какие-то темы.
Предварительно также хочу напомнить себе, что широко известные курсы — это расширенные и переработанные конспекты лекций. Следовательно, в целом материал должен соответствовать выделяемым на изучение курса часам и будущей специальности студентов. Авторы основывают свои курсы на ранее вышедших учебниках, развивают для получения наибольшего результата (за отведенное время) и дополняют материалом, связанным с будущей специальностью слушателей. Тут стоит отметить, что часы на начальный курс анализа уменьшались. Следовательно, старые книги имели больше важных отступлений и пояснений, но иногда вели не самым коротким путём к цели.Из наиболее популярных (и выдержавших испытание временем) курсов
[1] Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления (в трёх томах),
[2] Зорич В. А. Математический анализ (в 2 томах),
[3] Ильин В.А., Позняк Э.Г Основы математического анализа (в 2 томах),
[4] Никольский С.М. Курс математического анализа (в 2 томах),
[5] Кудрявцев Л.Д. Курс математического анализа (в 3 томах)
только в книге Фихтенгольц (Ф) содержится достаточное для усвоения материала кол-во примеров и упражнений. Что-то можно опустить, чего-то не хватает, но основной материал покрывается. Совместно с остальными учебниками использовали сборники задач. Отмеченный Сборник задач по математическому анализу Демидовича (Д) не охватывает материал и содержит множество подобных упражнений. Преподаватели могут выбрать упражнения для проведения семинарских занятий и домашек, но для самостоятельно изучающего материал возникает проблема выбора упражнений из Д (как и вообще из известных мне сборников задач) и поиска недостающих.
Только в [1] и [3] вводятся простейшие элементарные функции. На мой взгляд, более аккуратно в Ильине и Позняке (ИП). Близкое к историческому (или напоминающее историческое) введение тригонометрических функций либо крайне утомительное (потребует введение меры угла, длины дуги окружности и т.п.), либо требует какое-то нетривиальное разделение материала с курсом аналитической геометрии. Поэтому ИП вводят синус и косинус при помощи системы функциональных уравнений. В других книгах в основном просто напоминаются школьные сведения. После сокращения часов на вводный курс анализа времени на этот материал при подготовке будущих физиков, химиков, программистов заведомо не хватает, поэтому обычно материал оставляют на самостоятельное изучение (или вообще исключают из программы). При первом самостоятельном изучении можно просто повторить основные свойства без доказательства.
Аналогично, на введение действительных чисел времени не хватает, поэтому материал выделенный мелким шрифтом в книге ИП в разделе, посвящённом действительным числам, опускают. Для физика, программиста, в первом приближении достаточно наивных школьных представлений и результата в форме системы аксиом вещественных чисел.
Ф имеет очень устаревшую терминологию. Это как легко преодолеваемые мелкие изменения терминологии
варианта —
последовательность, бесконечные производные, так и в целом. Более абстрактное изложение позволяет получать более компактное изложение. Отдельные части могут казаться слабо мотивированными, но, освоив материал в целом, получаем мощный фундамент для освоения последующих предметов и решения практических задач. Такой современный подход всё же предполагает очную форму обучения. По крайней мере, мне не известен столь же сбалансированный учебник, как старинный Ф.
При изучении анализа по ИП мы сталкиваемся, особенно в дополнительных главах, например в главе, посвящённой вычислению элементарных функций, с сильно устаревшим материалом. [В целом, реально сложно сопровождать построение теории численными реализациями. Довольно часто оказывается, что эффективный способ вычисления вводимых в начале курса величин опирается на излагаемый значительно позже материал или вообще на излагаемый в других курсах.] Некоторые примеры, а иногда и основной материал содержат слабо мотивированные вещи. Например, в теме числовые последовательности показывается, что предел последовательности
равен
. Однако откуда берётся эта последовательность, насколько она хороша для вычисления корня и какие рассуждения можно использовать для решения аналогичных задач, подробно не обсуждается. Очень кратко и ненаглядно рассматривается вычисление предела простейших рекуррентных последовательностей. (Тут сильно могли бы помочь геометрические образы, и это указывалось во многих темах dxdy при рассмотрении конкретных упражнений.)
Второй том ИП написан более сжато, чем первый. Сведения об интеграле Лебега излагаются в необходимом для курса объёме. Это приводит к довольно специфичному изложению.
В целом об ИП. Некоторые утверждения приводятся при достаточно слабых условиях, что приводит к необходимости достаточно трудных или утомительных для начального курса доказательств. Некоторые (полезные при решении задач) утверждения не выделены. Если абстрагироваться от (в основном) устаревших дополнений, то можно сказать, что ИП занимает промежуточное положение между Ф и Зоричем.
По поводу упражнений. На мой взгляд, в теме предел числовой последовательности уместно выполнить 3-4 упражнения (особенно, если функции ещё не определены). Больше упражнений на пределы может быть выполнено в теме предел функции и последующих темах. Вычисление производных не вызывает трудностей, кроме невнимательности, поэтому упражнения на эту тему должны в основном отбираться более поучительные, чем технические. Особо много технических упражнений приходится на всевозможные «классы интегралов берущихся в элементарных функциях»: интегрирование алгебраической дроби, дробно-линейной иррациональности, квадратичной рациональности и близких. Хорошо если руководитель подберёт упражнения таким образом, чтобы вычисленные неопределённые интегралы пригодились в последующих упражнениях, например на тему кратные интегралы.
Упражнения на применение формулы Маклорена для вычисления пределов могут быть утомительными. Такие упражнения есть и в Д. Выполнять много упражнений на эту тему не особо полезно, поскольку современные системы компьютерной алгебры очень быстро выполняют такие упражнения.
При выполнении упражнений на двойные, тройные и кратные интегралы желательно больше уделить внимание выбору замены переменных, после которой удобней свести к повторному интегралу. Для сверки с ответом частично определённые интегралы можно вычислять при помощи систем компьютерной алгебры: иначе просто упражнения на все темы не успеть выполнить.
На мой взгляд, Никольский [4] и Кудрявцев [5], как и ИП, занимают промежуточное положение между Ф и Зоричем [2].
Мне не известны современные подробные учебники со сбалансированным изложением теории, примеров и упражнений. Так что, вроде, приходится выбирать между устаревшим, но с большим числом примеров и упражнений Ф, и более современным, но с недостатком примеров и упражнений Зоричем.