А теперь я не понял. Почему они некоомутативные?
Если вам неясен смысл слова "некоммутативные", то думаю проще всего будет посмотреть это в книге Шутц "Геометрические методы математической физики", параграф 2.14 - Скобки Ли и некоординатные базисы.
А если вы спрашиваете, почему они обязательно некоммутативные... Во-первых, мы просто не требовали, чтобы они были коммутативными (да и вообще
Утундрий пока расссматривал их только в каждой точке по отдельности, а поля в явном виде не вводил). Ну и потом, если мы требуем ортонормированности (чтобы метрика была канонической), то на коммутативность рассчитывать не стоит - только в исключительных случаях координатный базис бывает ортонормированным (например, если

евклидовы, то

будут совпадать с

и будут конечно коммутативными).