Где, скажите пожалуйста у ЛЛ-2 вводятся понятие карты и атласа?
А зачем им этим заниматься? Чтобы угодить лично Вам?
Покажите мне монографию где подробно было бы для этой важной задачи ( нахождение решения сф-сим тела) введены понятия карт и главное - решена эта конкретная задача?
Мне недосуг разыскивать для Вас литературу. Ищите сами.
Понятия карты и атласа вводятся, естественно, в теории многообразий, а не в ОТО. Возьмите учебник по дифференциальной геометрии и ищите там. Например:
И.Я.Бакельман, А.Л.Вернер, Б.Е.Кантор. Введение в дифференциальную геометрию «в целом»."Наука", Москва, 1973.
Понятия карты и атласа вводятся в параграфе 9.4. Делается всё это очень кратко, мимоходом, потому что это такая банальность… Впрочем, Вы до сих пор не можете понять, что замена координат ни на какую физику не влияет, поскольку от координат зависит не физика, а её описание; так что уж и не знаю, что Вы в этой книге поймёте.
Ну например, как Вы по виду уравнений (когда еще решение не найдено) поймете всю область найденная карта будет покрывать ?
Никак не пойму. Ну и что? Если окажется, что карта не полная, то надо будет искать способ продолжения. Как, например в случае решения Шварцшильда.
Munin костатировал , что имеются калибровочные преобразования, которые не влияют на измеримые величины в уравнениях, но пояснения и доказательства не привел.
Они по определению не влияют. Поэтому никакого "доказательства" там и нет.
Я видел нечно похожее у Толмена, когда он находит отдельно решение внутри статического шара и отдельно вне в стандартных координатах и показывает , и показывает, как их сшить на границе. Но это не совсем то, что мы обсуждаем, поскольку Вы говорите о 2-х картах именно в вакууме.
Без разницы.
Мне также интересно, как осуществляется переход между картами, например для задачи радиально падающего тела.
Тривиально. Когда падающее тело, двигаясь в пределах первой карты, попадает в точку, общую для двух карт, пересчитываем всё, что нужно, из первой карты во вторую (вот здесь и происходит замена координат в общей части двух карт), а потом продолжаем расчёт уже во второй карте.
Здесь хотелось бы вмешаться в Ваш спор. Получается, что если рассматривать замену t на -t , как преобразование координат, то мы получаем решение описывающее другую физическую реальность ( я не верю ни в белые ни в черные, но предположим мы их наблюдаем). С другой стороны, Вы недавно как раз ругались по этому поводу, что смена координат ни на что не влияет в смысле описание действительнсти.
Никакого спора и не было. Я и в этот раз обругал автора за эту выдумку.
SergeyGubanov ведь
предлагает сунуть человеку под нос какие-то формулы, ничего ему не сказать, и пусть этот человек сам думает, что хочет.
Между тем, физические формулы всегда должны сопровождаться их физической интерпретацией. В данном случае, поскольку положительное направление времени по виду формул определить невозможно, оно должно указываться явно (по крайней мере, если это существенно для понимания формул).
На самом деле в большинстве случаев системы координат выбирают так, что ровно одна из координат является времениподобной, и положительное направление времени соответствует возрастанию этой координаты. Приняв такое соглашение "по умолчанию", можно без необходимости не указывать направление времени. Однако, обратив времениподобную координату, мы нарушили это соглашение, поэтому обязаны сказать об этом явно.
Однако никто не обязан выбирать координаты непременно в соответствии с этим соглашением. Допустим, Вам подсунули под нос метрику
(спасибо, хоть сказали, что это метрика, что
— координаты, а
, как обычно, обозначает дифференциал). Что Вы будете думать по поводу временной координаты и направления времени?
чему соответствует физическое будущее (росту или уменьшению
) выясняется экспериментально
Не экспериментально, а интерпретацией. И, поскольку интерпретация без указания направления времени неоднозначна, направление времени должно быть тем или иным способом указано в интерпретации. А без интерпретации сравнить что либо с экспериментом невозможно.
Пример с комплексным преобразованием есть в книге Бурланкова.
По определению все координаты вещественные. Соответственно, все преобразования координат — тоже.
Введение комплексных координат возможно, но это может выводить за пределы исходного многообразия (а может и не выводить, но в таком случае введение комплексных координат будет чисто формальным), поэтому возникающие в этом случае "замены" заменами координат на самом деле не будут.