2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6 ... 11  След.
 
 Re: Идеальная школьная программа по математике
Сообщение28.07.2012, 22:09 


25/12/11
146
arqady в сообщении #597534 писал(а):
А если надо найти уравнение плоскости, параллельной $\vec{(1,2,3)}$ и $\vec{(2,3,1)}$, проходящей через точку $(3,1,2)$?
Как Вы поступите?

через уравнение плоскости, заданой точкой и напрямным подпространством. (не знаю как записать определитель в $TeX$, словами это будет выглядеть так: определитель 3-го порядка. 1 строка: от свободныых координат плоскости отнять координаты заданой точки, 2 строка: координаты первого вектора, 3 строка: координаты второго вектора. Весь определитель равен нулю.)

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение29.07.2012, 00:41 
Аватара пользователя


14/02/10
4956
arqady в сообщении #597641 писал(а):
Вот и подумайте. :wink: Могу и конкретизировать: найдите уравнение плоскости, проходящей через точку $(1,2,3)$, параллельной $\vec{(1,2,3)}$.
....


Бесконечное число плоскостей будет

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение31.07.2012, 23:47 
Заслуженный участник


26/06/07
1929
Tel-aviv
Shtorm в сообщении #600626 писал(а):
Бесконечное число плоскостей будет

Это всё философия! Найдите уравнение. :wink:

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение01.08.2012, 12:04 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
arqady в сообщении #597641 писал(а):
...найдите уравнение плоскости, проходящей через точку $(1,2,3)$, параллельной $\overrightarrow{(1,2,3)}$.

$A(x-1) + B(y-2) + C(z-3) = 0$, где $A + 2B + 3C = 0$ и $A^2 + B^2 + C^2 > 0$.

Когда преподавал в физматшколе, считал, что физматшкольники должны делать такие вещи не задумываясь. От некоторых даже удалось этого добиться :? Должны ли уметь это делать обычные школьники - непонятно.

-- Ср авг 01, 2012 15:08:52 --

Про загнивающий Запад всё понятно... :-) Стало интересно, как сейчас учат математике в китайских школах. Никаких публикаций на этот счёт не было?

Вопрос даже имеет некоторое практическое значение. У нас в НГУ сейчас по какой-то там программе будут китайскую группу набирать. Подразумевается, что китайцы будут изучать у нас математику и параллельно русский язык. Если вдруг придётся иметь с ними дело - на какие начальные знания ориентироваться?

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение01.08.2012, 16:14 
Заслуженный участник


11/05/08
32166
Профессор Снэйп в сообщении #601801 писал(а):
Если вдруг придётся иметь с ними дело - на какие начальные знания ориентироваться?

Не знаю, на какие. Могу лишь сказать, что китайцы -- ребята, в общем, достаточно образованные, чтобы более-менее сознательно воспринимать вузовский материал (для этого ведь вовсе не обязательно владеть всей нашей школьной программой во всём её великолепии, достаточно лишь каких-то базовых знаний, а они у них обычно есть). С другой стороны: китайцы обычно почти такие же разгильдяи, как и русские (в отличие от вьетнамцев, скажем). Т.е. в типичной китайской группе обычно есть один-два-три симпатичных человека, и есть заметная масса шалопаев, выбивающих себе оценки. Правда, надо сказать, что последние делают это довольно простодушно, не давя на психику (в отличие от арабов: те если нормальные -- то нормальные, но если уж нудят -- то неприлично). А вот у вьетнамцев обычно все как-то однороднее -- не наблюдается особых выбросов ни в положительную, ни в отрицательную сторону, они очень спокойны. Правда, с чисто вьетнамскими группами я никогда дела не имел, вьетнамцы всегда были внедрены или в русскую, или в китайскую группу.

-- Ср авг 01, 2012 17:17:31 --

Да, а русский язык китайцы в своей массе ни хрена не знают, сколько б их ни учили параллельно или даже превентивно. И частенько этим незнанием злоупотребляют (речь, конечно, о категории выбивальщиков). К этому надо быть готовым.

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение01.08.2012, 17:35 
Аватара пользователя


14/08/09
1140
Профессор Снэйп в сообщении #601801 писал(а):
делать такие вещи не задумываясь

Профессор Снэйп в сообщении #601801 писал(а):
Должны ли уметь это делать обычные школьники - непонятно.

Не знаю как обычные, но думающие точно не должны :?

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение01.08.2012, 17:43 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ewert в сообщении #601899 писал(а):
Да, а русский язык китайцы в своей массе ни хрена не знают, сколько б их ни учили параллельно или даже превентивно. И частенько этим незнанием злоупотребляют (речь, конечно, о категории выбивальщиков). К этому надо быть готовым.

А английский?

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение01.08.2012, 22:11 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Mathusic в сообщении #601929 писал(а):
Не знаю как обычные, но думающие точно не должны

Почему же не должны? Разве что-то неправильно?

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 12:49 
Аватара пользователя


14/08/09
1140
Профессор Снэйп в сообщении #602055 писал(а):
Почему же не должны? Разве что-то неправильно?

Потому, что должны делать думая, а не как с тем векторным произведением, про которое рассказывал arqady :evil:

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 21:52 
Аватара пользователя


14/02/10
4956
arqady в сообщении #601715 писал(а):
Shtorm в сообщении #600626 писал(а):
Бесконечное число плоскостей будет

Это всё философия! Найдите уравнение. :wink:


Предлагаю альтернативный вариант решения, через уравнение пучка плоскостей:
Зададим уравнение прямой, проходящей через точку (1;2;3) параллельно вектору $\vec n=(1;2;3)$ в виде системы из двух уравнений плоскостей:

$$
\begin{cases}
A_1x+B_1y+C_1z+D_1=0,&\\
A_2x+B_2y+C_2z+D_2=0
\end{cases}
$$

Следовательно $\vec n=\begin{vmatrix}
i &  j & k & \\
A_1 &  B_1 & C_1 & \\
A_2 &  B_2 & C_2 &
\end{vmatrix}=(1;2;3)
$

Методом подбора находим, например такие значения коэффициентов:

$A_1=-2, B_1=1, C_1=0, A_2=0, B_2=-1.5, C_2=1$

Из системы уравнений выражаем и подставляем:

$D_1=-A_1x-B_1y-C_1z=2\cdot 1-1\cdot 2 -0=0$

$D_2=-A_2x-B_2y-C_2z=0+1.5\cdot 2 -1\cdot 3=0$

Получаем одну из возможных систем уравнений, задающих прямую

$$
\begin{cases}
-2x+y=0,&\\
-1.5y+z=0
\end{cases}
$$

Уравнение пучка плоскостей:

$$\alpha (A_1x+B_1y+C_1z+D_1)+\beta (A_2x+B_2y+C_2z+D_2)=0$$

Подставляем, получаем искомое уравнение плоскостей:

$$\alpha (-2x+y)+\beta (-1.5y+z)=0$$
где $\alpha$ и $\beta$ одновременно не равны нулю.

Чем это решение лучше, чем решение Профессора Снеэйпа ? (недостатки очевидны)
А тем, что достаточно взять любые два коэффициента (чтоб только оба не нули) – и мы сразу получаем уравнение плоскости. А в решении Профессора Снеэйпа – каждый раз, когда мы хотим получить конкретное уравнение плоскости – необходимо будет подбирать координаты вектора нормали плоскости.

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 22:05 
Заслуженный участник


20/12/10
9179
Shtorm, Ваше решение просто кошмар.

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 22:09 
Аватара пользователя


14/02/10
4956
nnosipov, почему?

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 22:24 
Заслуженный участник


20/12/10
9179
Shtorm в сообщении #602493 писал(а):
Методом подбора находим, например такие значения коэффициентов:

$A_1=-2, B_1=1, C_1=0, A_2=0, B_2=-1.5, C_2=1$

Вот этот момент вполне кошмарен: решать нелинейную задачу методом подбора. Исходная-то задача гораздо проще.

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 22:42 
Аватара пользователя


14/02/10
4956
nnosipov в сообщении #602513 писал(а):
Shtorm в сообщении #602493 писал(а):
Методом подбора находим, например такие значения коэффициентов:

$A_1=-2, B_1=1, C_1=0, A_2=0, B_2=-1.5, C_2=1$

Вот этот момент вполне кошмарен: решать нелинейную задачу методом подбора. Исходная-то задача гораздо проще.


Ну, а что поделать? Используем же мы метод подбора, когда параметризуем плоскость. А зато посмотрите - какой элегантный и простой ответ! А главное - удобный ответ!

 Профиль  
                  
 
 Re: Идеальная школьная программа по математике
Сообщение02.08.2012, 22:46 
Заслуженный участник


20/12/10
9179
Shtorm в сообщении #602524 писал(а):
А зато посмотрите - какой элегантный и простой ответ! А главное - удобный ответ!
Можно подумать, в том решении он другой.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 152 ]  На страницу Пред.  1, 2, 3, 4, 5, 6 ... 11  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group