2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 19  След.
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 19:35 
Аватара пользователя


29/01/09
397
vek88 в сообщении #303132 писал(а):
А учить это я не могу по простой причине - этого нет в учебниках. Или Вы покажете такой учебник?

ПМСМ Вы слишком категоричны. Разумеется материал который Вы изложили имеется в учебниках. Новым у Вас является то, что Вы попытались построить кл. механику не применяя лагранжев подход. Для кв. механики всё это известно...

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 19:52 


15/10/09
1344
В. Войтик в сообщении #303267 писал(а):
vek88 в сообщении #303132 писал(а):
А учить это я не могу по простой причине - этого нет в учебниках. Или Вы покажете такой учебник?
ПМСМ Вы слишком категоричны. Разумеется материал который Вы изложили имеется в учебниках. Новым у Вас является то, что Вы попытались построить кл. механику не применяя лагранжев подход. Для кв. механики всё это известно...
Уважаемый В. Войтик!

ИМХО Вы не точны. Хотя бы в том, что нового в изложенном мной вообще ничего нет с точки зрения известно/не известно в науке. И я предупреждал об этом в самом начале. А вот с точки зрения методики преподавания - я такого в учебной литературе не видел. Об этом я тоже сказал в самом начале темы. А в цитируемом Вами сообщении просил предъявить учебник.

С учетом сказанного, будьте добры дать ссылку на учебник, хотя бы по квантам, где гамильтониан выводится из Галилей- или Пуанкаре-инвариантности.

С уважением,
vek88

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 20:01 
Заслуженный участник


13/12/05
4620
Я попробую подойти к выводу классической механики из Галилеевой инвариантности таким бесхитростным путем:
Найти наиболее общее дифференциальное уравнение второго порядка вида
$$
\mathbf{x}''=\mathbf F(\mathbf x,\mathbf x',t),\eqno (1)
$$
где $\mathbf x=(x_1,y_1,z_1,\ldots,x_n,y_n,z_n)$, которое не изменяет свой вид при преобразованиях Галилея.

Рассмотрим расширенной фазовое пространство $\widetilde S=\{(x_1,y_1,z_1,\ldots\,x_n,y_n,z_n,t)\}$, пополненное временем.

В этом пространстве действует группа преобразования, являющеяся представлением группы Галилея.
Генераторы имеют вид
$$
P_1=\sum_{i=1}^n \frac{\partial}{\partial x_i},\; P_2=\sum_{i=1}^n \frac{\partial}{\partial y_i},\; P_3=\sum_{i=1}^n \frac{\partial}{\partial z_i}
$$
$$
T=\frac{\partial}{\partial t}
$$
$$
X_1=\sum_{i=1}^n t\frac{\partial}{\partial x_i},\; X_2=\sum_{i=1}^n t\frac{\partial}{\partial y_i},\; X_3=\sum_{i=1}^n t\frac{\partial}{\partial z_i}
$$
$$
J_1=\sum_{i=1}^n -z_i\frac{\partial}{\partial y_i}+y_i\frac{\partial}{\partial z_i},\; J_2=\sum_{i=1}^n -z_i\frac{\partial}{\partial x_i}+x_i\frac{\partial}{\partial z_i},\; J_3=\sum_{i=1}^n -y_i\frac{\partial}{\partial x_i}+x_i\frac{\partial}{\partial y_i}
$$
Таким образом, преобразования, порожденные этими операторами, означают сдвиги и повороты системы как целого.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 20:08 


15/10/09
1344
Уважаемый myhand!

Понимаю Ваше желание увидеть модель неупругих столкновений точечных частиц в классической механике. Я бы тоже хотел посмотреть на такую.

Однако ИМХО Вы как-то неудачно преподнесли свое желание под лозунгом проверки закона сохранения массы. Вы бы сразу сказали, че хотите. Я бы Вас быстрей понял и не упирался бы рогом.

Итак, мне не известна Галилей (или Пуанкаре) инвариантная модель неупругих столкновений неквантовых точечных частиц. Сильно подозреваю, что такая не существует в природе.

Что делают физики для описания такой модели. Берут не точечные тела. Например, для упругих столкновений берут "стальные" шарики. При этом, если речь идет об имитации точечных частиц, не вникают в конкретную динамику самого процесса столкновения. А дальше логика понятна - берем законы сохранения энергии и имульса (масса сохраняется само собой) - и приравниваем энергию и импульс до и после. Например, таким образом мы заключаем, что после столкновения идеального стального шара с в покоящимся идеальным (вращение и трение не учитываем) они разлетаются под прямым углом (если не ошибаюсь).

То же самое делаем и с неупругим столкновением. Разумеется, масса снова сохраняется.

Вот все, что могу сказать по этому поводу.

С уважением,
vek88

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 20:33 
Аватара пользователя


29/01/09
397
vek88 в сообщении #303276 писал(а):

ИМХО Вы не точны. Хотя бы в том, что нового в изложенном мной вообще ничего нет с точки зрения известно/не известно в науке. И я предупреждал об этом в самом начале.

Значит я Вас неверно понял.
Цитата:
А вот с точки зрения методики преподавания - я такого в учебной литературе не видел. Об этом я тоже сказал в самом начале темы. А в цитируемом Вами сообщении просил предъявить учебник.
С учетом сказанного, будьте добры дать ссылку на учебник, хотя бы по квантам, где гамильтониан выводится из Галилей- или Пуанкаре-инвариантности.

Я такого учебника по квантовой механике не знаю... По классической механике есть одноимённый учебник Голдстейна, который даёт набросок построения классической механики из канонических преобразований. Правда вывода гамильтониана свободной частицы и у него нет...

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 20:53 
Заслуженный участник


13/12/05
4620
Для начала, конечно, рассмотрим случай одной частицы: $n=1$.
Чтобы записать условие инвариантности уравнения $(1)$ потребуется небольшое теоретическое введение.
Пусть в пространстве $\widetilde S =\{(x,y,z,t)\}$ действует однопараметрическая группа преобразований $G$
$$
\widetilde x=f(x,y,z,t;a),\; \widetilde y=g(x,y,z,t;a),\; \widetilde z=h(x,y,z,t;a),\; \widetilde t=k(x,y,z,t;a),
$$
где $a$ -- групповой параметр.

Наряду с исходным пространством $\widetilde S$ я хочу ввести первое продолженное пространство $\widetilde S_1=\{(x,y,z,x',y',z',t)\}$, элементы которого - это линейные ростки функции $x=x(t), y=y(t), z=z(t)$. Я хочу продолжить действие группы $G$ c $\widetilde S$ на $\widetilde S_1$, получив таким образом первую продолженную группу $G_1$, действующую как
$$
\widetilde x=f(x,y,z,t;a),\; \widetilde y=g(x,y,z,t;a),\; \widetilde z=h(x,y,z,t;a),\; \widetilde t=k(x,y,z,t;a)\eqno (2)
$$
$$
\widetilde {x'}=f_1(x,y,z,x',y',z', t;a),\; \widetilde {y'}=g_1(x,y,z,x',y',z',t;a),\; \widetilde {z'}=h_1(x,y,z,x',y',z',t;a)\eqno (2')
$$
Функции $f_1,g_1,h_1$ подбираются так, чтобы равенства $dx=x'dt, dy=y'dt, dz=z'dt$ при подстановке в них вместо $x,y,z,t$ преобразованных значений $\widetilde x,\widetilde y,\widetilde z,\widetilde t$ сохранились. Таким образом, росток функции $x=x(t), y=y(t), z=z(t)$ должен перейти в росткок функции $\widetilde x=\widetilde x(\widetilde t), \widetilde y=\widetilde y(\widetilde t), \widetilde z=\widetilde z(\widetilde t)$.
Например, найдем $f_1$
Имеем $d\widetilde x=\widetilde {x'}d\widetilde t$. Подставляя сюда $(2)$, получим $df=f_1dk$, или $\left(f_xx'+f_yy'+f_zz'+f_t\right)dt=f_1\left(k_xx'+k_yy'+k_zz'+k_t\right)dt$, т.е.
$$
f_1=\dfrac{f_xx'+f_yy'+f_zz'+f_t}{k_xx'+k_yy'+k_zz'+k_t}
$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 20:57 
Заблокирован
Аватара пользователя


03/03/10

4558
vek88 в сообщении #303285 писал(а):
Понимаю Ваше желание увидеть модель неупругих столкновений точечных частиц в классической механике. Я бы тоже хотел посмотреть на такую.

Однако ИМХО Вы как-то неудачно преподнесли свое желание под лозунгом проверки закона сохранения массы. Вы бы сразу сказали, че хотите. Я бы Вас быстрей понял и не упирался бы рогом.


А почему неудачно? Разве распад частицы на две - не простейший процесс, на примере которого в релятивистском случае имеет смысл говорить о "несохранении массы"?

vek88 в сообщении #303285 писал(а):
А дальше логика понятна - берем законы сохранения энергии и имульса (масса сохраняется само собой) - и приравниваем энергию и импульс до и после. Например, таким образом мы заключаем, что после столкновения идеального стального шара с в покоящимся идеальным (вращение и трение не учитываем) они разлетаются под прямым углом (если не ошибаюсь).

То же самое делаем и с неупругим столкновением. Разумеется, масса снова сохраняется.


Число шариков не меняется - так что это неинтересно. Вот "логика" менее понятна, когда число шариков меняется. Пример я привел выше, но вы в упор его не замечаете.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 21:33 


15/10/09
1344
myhand в сообщении #303319 писал(а):
(1) А почему неудачно? Разве распад частицы на две - не простейший процесс, на примере которого в релятивистском случае имеет смысл говорить о "несохранении массы"?

(2) Число шариков не меняется - так что это неинтересно. Вот "логика" менее понятна, когда число шариков меняется. Пример я привел выше, но вы в упор его не замечаете.
Уважаемый myhand!

1. Причем здесь релятивистский случай? Я ведь изначально заварил эту кашу, чтобы пресечь инсинуации на тему несохранения массы в классической механике.

2. Повторяю: предъявите Ваше фазовое пространство - тогда и будем посмотреть дальше.

А сейчас я с большей пользой займусь рассмотрением новых постов уважаемго Padawan, где рассматривается очень интересное представление группы Галилея.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение27.03.2010, 23:20 
Заслуженный участник


13/12/05
4620
В соответствие с общими установками от vek88, нас интересует не столько сама группа $G$, сколько её генератор $X$, и аналогично не столько продолженная группа $G_1$, сколько её генератор $X_1$. Генератор $X_1$ продолженной группы $G_1$ называется первым продолжением оператора $X$. Покажем, как его вычислять.
Пусть
$$X=\xi\dfrac{\partial}{\partial x}+\eta\dfrac{\partial}{\partial y}+\zeta\dfrac{\partial}{\partial z}+\tau\dfrac{\partial}{\partial t},\eqno (3)$$ где $\xi,\eta,\zeta,\tau$ -- функции от $x,y,z,t$.
Продолженный оператор будет иметь вид
$$X_1=X+\xi_1\dfrac{\partial}{\partial x'}+\eta_1\dfrac{\partial}{\partial y'}+\zeta_1\dfrac{\partial}{\partial z'},\eqno (3')$$
где $\xi_1,\eta_1,\zeta_1$ уже будут функциями от $x,y,z,t,x',y',z'$.

Продифференцируем равенство $df=f_1dk$ по параметру $a$ в точке $a=0$. Учитывая, что $k\mid_{a=0}=t,\; f_1\mid_{a=0}=x'$, получим $D\xi=\xi_1+x'D\tau$, т.е.
$$
\xi_1=D\xi-x'D\tau,
$$
где $D\xi=\xi_xx'+\xi_yy'+\xi_zz'+\xi_t$ -- полная производная по $t$.
Аналогично получаются и другие формулы продолжения для коэффициентов продолженного оператора $X_1$. Запишем их все вместе:
$$
\xi_1=D\xi-x'D\tau,\; \eta_1=D\eta-y'D\tau,\; \zeta_1=D\zeta-z'D\tau \eqno (4)
$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение28.03.2010, 08:37 
Заслуженный участник


13/12/05
4620
Найдем продолжения операторов из нашей галилеевой алгебры (напомню, что у нас пока $n=1$) .
$$J_1=-z\dfrac{\partial}{\partial y}+y\dfrac{\partial}{\partial z}=0\cdot\dfrac{\partial}{\partial x}-z\dfrac{\partial}{\partial y}+y\dfrac{\partial}{\partial z}+0\cdot\dfrac{\partial}{\partial t},$$
т.е. здесь $\xi=0,\;\eta=-z,\;\zeta=y,\;\tau=0$. По формулам продолжения $(4)$ находим
$$\xi_1=0,\; \eta_1=-z',\;\zeta_1=y'$$
Такми образом, первое продолжение оператора $J_1$ равно
$$J_1^{(1)}=J_1-z'\frac{\partial}{\partial y'}+y'\frac{\partial}{\partial z'}$$

Едем дальше, $X_1=t\dfrac{\partial}{\partial x}$. Здесь $\xi=t,\;\eta=\zeta=\tau=0$. По формулам продолжения находим $\xi_1=1,\; \eta_1=\zeta_1=0$ и
$$
X_1^{(1)}=X_1+\frac{\partial}{\partial x'}
$$
У операторов $P_1,P_2,P_3, T$ коэффициенты являются константами, поэтому их продолжения равны им самим (см. формулы продолжения).

Итак, запишем все продолженный операторы вместе
$$
P_1^{(1)}=P_1,\;\; P_2^{(1)}=P_2,\;\; P_3^{(1)}=P_3 ,\;\; T^{(1)}=T 
$$
$$
X_1^{(1)}=X_1+\frac{\partial}{\partial x'},\;\; X_2^{(1)}=X_2+\frac{\partial}{\partial y'},\;\; X_3^{(1)}=X_3+\frac{\partial}{\partial z'} \eqno (5)
$$
$$
J_1^{(1)}=J_1-z'\frac{\partial}{\partial y'}+y'\frac{\partial}{\partial z'},\;\; J_2^{(1)}=J_2-z'\frac{\partial}{\partial x'}+x'\frac{\partial}{\partial z'},\;\; J_3^{(1)}=J_3-y'\frac{\partial}{\partial x'}+x'\frac{\partial}{\partial y'}
$$

Заметим, что операция продолжения векторных полей является линейной (формулы продолжения линейны относительно коэффициентов $\xi,\eta,\zeta,\tau$ оператора) и сохраняет коммутаторы, т.е. $[X,Y]_1=[X_1,Y_1]$ -- продолжение коммутатора равно коммутатору продолжений. В последнее свойство придется поверить на слово, потому что я забыл как оно доказывается по-простому, из свойств коммутатора, а "в лоб" получаются слишком длинные вычисления. Но если не верится, можно взять и посчитать коммутаторы операторов $(5)$ и убедиться, что они равны коммутаторам исходных операторов. Эти два свойства показывают, что операция продолжения векторных полей является изоморфизмом алгебр Ли, а значит, и групп Ли.
Таким образом, продолженная группа также является представлением группы Галилея, но уже в продолженном пространстве.


Так как дифференциальное уравнение $(1)$ является уравнением второго порядка, то нам потребуется второе продолжение группы $G$, которое мы обозначим $G_2$. Группа $G_2$ действует во втором продолженном пространстве $\widetilde S_2=\{(x,y,z,x',y',z',x'',y'',z'')\}$. Элементами этого пространства являются квадратичные ростки функции $x=x(t),\; y=y(t),\; z=z(t)$.
Действие группы $G_2$ описывается уравнениями $(2)$, $(2')$ из сообщения #303316 и
$$
\widetilde {x''}=f_2(x,y,z,x',y',z',x'',y'',z'', t;a),\; \widetilde {y''}=g_2(x,y,z,x',y',z',x'',y'',z'',t;a),\; \widetilde {z''}=h_2(x,y,z,x',y',z',x'',y'',z'',t;a)\eqno (2'')
$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение28.03.2010, 09:37 
Заслуженный участник


13/12/05
4620
При этом функции $f_2,\; g_2,\; h_2$ подбираются так, чтобы равенство $dx'=x''dt$ (и ему подобные) сохранилось при переходе к преобразованным переменным $\widetilde x, \widetilde t$, т.е. чтобы было $d\widetilde {x'}=\widetilde {x''}d\widetilde t$.

Если, $X_2=X_1+\xi_2\dfrac{\partial}{\partial x''}+\eta_2\dfrac{\partial}{\partial y''}+\zeta_2\dfrac{\partial}{\partial z''}$ -- второе продолжение оператора $X$ (он же генератор группы $G_2$), то поступая как выше, для его коэффициентов найдем такие формулы
$$
\xi_2=D\xi_1-x''D\tau,\; \eta_2=D\eta_1-y''D\tau,\; \zeta_2=D\zeta_1-z''D\tau \eqno (6)
$$
Здесь $\xi_2,\; \eta_2,\; \zeta_2$ -- функции от переменных $x,y,z,x',y',z',x'',y'',z'',t$.

Запишем вторые продолженные операторы, вычисленные по формулам $(6)$
$$
P_1^{(2)}=P_1,\;\; P_2^{(2)}=P_2,\;\; P_3^{(2)}=P_3 ,\;\; T^{(2)}=T 
$$
$$
X_1^{(2)}=X_1^{(1)},\;\; X_2^{(2)}=X_2^{(1)},\;\; X_3^{(2)}=X_3^{(1)} \eqno (7)
$$
$$
J_1^{(2)}=J_1^{(1)}-z''\frac{\partial}{\partial y''}+y''\frac{\partial}{\partial z''},\;\; J_2^{(2)}=J_2^{(1)}-z''\frac{\partial}{\partial x''}+x''\frac{\partial}{\partial z''},\;\; J_3^{(2)}=J_3^{(1)}-y''\frac{\partial}{\partial x''}+x''\frac{\partial}{\partial y''}
$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение28.03.2010, 10:47 
Заслуженный участник


13/12/05
4620
Система дифференциальных уравнений $(1)$, в которой переменные $x,y,z,x',y',z',x'',y'',z'',t$ считаются независимыми, задает некоторую многомерную поверхность $E$ в $10$-мерном втором продолженном пространстве $\widetilde S_2=\{(x,y,z,x',y',z',x'',y'',z'',t)\}$.

Вопрос. Какова размерность поверхности $E$ а) в случае $n=1$ б) в случае произвольного $n$ ?

Инвариантность уравнения $(1)$ означает, что поверхность $E$ инвариантна относительно действия группы $G_2$. Т.е. преобразования группы $G_2$ переводят $E$ в себя.

А это равносильно тому, что векторные поля-генераторы $G_2$ должны касаться поверхности $E$.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение28.03.2010, 12:17 
Заслуженный участник


13/12/05
4620
Запишу систему $(1)$ в развернутом виде
$$
\left\{ \begin{array}{l}
x''=F_1(x,y,z,x',y',z',t)\\
y'' = F_2(x,y,z,x',y',z',t)\\
z'' = F_3(x,y,z,x',y',z',t)
\end{array} \right.
$$
удобнее все перенести в одну сторону
$$
\left\{ \begin{array}{l}
F_1(x,y,z,x',y',z',t)-x''=0\\
F_2(x,y,z,x',y',z',t)-y''=0\\
F_3(x,y,z,x',y',z',t)-z''=0
\end{array} \right.
$$

Теперь записываю условие касания векторов $(7)$ этой поверхности $E$.
$P_1^{(2)},\;\; P_2^{(2)},\;\; P_3^{(2)},\;\; T^{(2)}$:
$$\frac{\partial}{\partial x} \left (F_1-x''\right)=0,\; \frac{\partial}{\partial y} \left (F_1-x''\right)=0,\; \frac{\partial}{\partial z} \left (F_1-x''\right)=0,\; \frac{\partial}{\partial t} \left (F_1-x''\right)=0$$
$$
\frac{\partial}{\partial x} \left (F_2-y''\right)=0,\; \frac{\partial}{\partial y} \left (F_2-y''\right)=0,\; \frac{\partial}{\partial z} \left (F_2-y''\right)=0,\; \frac{\partial}{\partial t} \left (F_2-y''\right)=0$$
$$
\frac{\partial}{\partial x} \left (F_3-z''\right)=0,\; \frac{\partial}{\partial y} \left (F_3-z''\right)=0,\; \frac{\partial}{\partial z} \left (F_3-z''\right)=0,\; \frac{\partial}{\partial t} \left (F_3-z''\right)=0$$
Напомню, что переменные $x,y,z,x',y',z',x'',y'',z'',t$ мы считаем независимыми. Поэтому из выписанных уравнений получается, что функции $F_1,\; F_2,\; F_3$ не зависят от $x,y,z,t$.

Едем дальше.
$X_1^{(2)},\; X_2^{(2)},\; X_3^{(2)}$ (сразу кое-что упрощаю):
$$
\frac{\partial F_i}{\partial x'}=0,\;\; \frac{\partial F_i}{\partial y'}=0,\;\; \frac{\partial F_i}{\partial z'}=0,\quad i=1,2,3
$$
Значит, функции $F_1,\; F_2,\; F_3$ не могу зависеть и от скоростей $x',y',z'$, т.е. являются некоторыми константами.

-- Вс мар 28, 2010 12:59:21 --

Наконец, рассмотрим операторы пространственных вращений
$J_1^{(2)},\; J_2^{(2)},\; J_3^{(2)}$ (упрощаю с учетом предыдущего, и не выписываю $0=0$):
$$J_2^{(2)}(F_1-x'')=z'',\; J_3^{(2)} (F_1-x'')=y''$$
$$J_1^{(2)}(F_2-y'')=z'',\; J_3^{(2)} (F_2-y'')=-x''$$
$$J_1^{(2)}(F_3-z'')=-y'',\; J_2^{(2)} (F_3-z'')=-x''$$
(со знаками мог ошибиться, но это не принципиально)

На поверхности $E$ эти величины должны обращаться в нуль в силу условия касания, так что окончательно, уравнения поверхности $E$ $\equiv$ уравнения движения $(1)$ имеют вид
$$
\left\{ \begin{array}{l}
x'' = 0\\
y'' = 0\\
z'' = 0
\end{array} \right.
$$
Получили первый закон Ньютона - свободная материальная точка в ИСО движется прямолинейно и равномерно.

Дальше рассмотрим случай двух точек $n=2$ и, я надеюсь, получится вывести второй и третий законы Ньютона, а заодно и показать, как из галилеевой инвариантности естественно возникает понятие массы материальной точки.
Жду ваших комментариев.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение28.03.2010, 14:22 
Заслуженный участник


13/12/05
4620
Перехожу к случаю $n=2$. Надо ввести более краткие обозначения для координат.
$\alpha$-ую координату $i$-ой частицы обозначим $x_i^\alpha$, $\alpha=1,2,3$, $i=1,\ldots,n$.

Уравнения $(1)$ имеют вид
$${x_i^\alpha}''=F_i^\alpha(\mathbf{x},t),$$
где $\mathbf x$ - совокупность всех координат всех частиц.

Продолженные операторы, будут иметь вид
Первое продолжение:
$$
P_1^{(1)}=P_1,\;\; P_2^{(1)}=P_2,\;\; P_3^{(1)}=P_3 ,\;\; T^{(1)}=T 
$$
$$
X_1^{(1)}=X_1+\sum\limits_{i=1}^n\frac{\partial}{\partial x_i^1'},\;\; X_2^{(1)}=X_2+\sum\limits_{i=1}^n\frac{\partial}{\partial x_i^2'},\;\; X_3^{(1)}=X_3+\sum\limits_{i=1}^n\frac{\partial}{\partial x_i^3'} \eqno (5n)
$$
$$
J_1^{(1)}=J_1+\sum\limits_{i=1}^n-x_i^3'\frac{\partial}{\partial x_i^2'}+x_i^2'\frac{\partial}{\partial x_i^3'},\;\; J_2^{(1)}=J_2+\sum\limits_{i=1}^n-x_i^3'\frac{\partial}{\partial x_i^1'}+x_i^1'\frac{\partial}{\partial x_i^3'},\;\; J_3^{(1)}=J_3+\sum\limits_{i=1}^n-x_i^2'\frac{\partial}{\partial x_i^1'}+x_i^1'\frac{\partial}{\partial x_i^2'}
$$
Эти операторы действуют в первом продолженном пространстве $\widetilde S_1=\{(\mathbf{x},\mathbf{x}',t)\}$


Второе продолжение:
$$
P_1^{(2)}=P_1,\;\; P_2^{(2)}=P_2,\;\; P_3^{(2)}=P_3 ,\;\; T^{(2)}=T 
$$
$$
X_1^{(2)}=X_1^{(1)},\;\; X_2^{(2)}=X_2^{(1)},\;\; X_3^{(2)}=X_3^{(1)} \eqno (7n)
$$
$$
J_1^{(2)}=J_1^{(1)}+\sum\limits_{i=1}^n-x_i^3''\frac{\partial}{\partial x_i^2''}+x_i^2''\frac{\partial}{\partial x_i^3''},\;\; J_2^{(2)}=J_2^{(1)}+\sum\limits_{i=1}^n-x_i^3''\frac{\partial}{\partial x_i^1''}+x_i^1''\frac{\partial}{\partial x_i^3''},\;\; J_3^{(2)}=J_3^{(1)}+\sum\limits_{i=1}^n-x_i^2''\frac{\partial}{\partial x_i^1''}+x_i^1''\frac{\partial}{\partial x_i^2''}
$$
Эти операторы действуют во втором продолженном пространстве $\widetilde S_2=\{(\mathbf{x},\mathbf{x}',\mathbf{x}'', t)\}$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение28.03.2010, 16:12 


15/10/09
1344
Padawan в сообщении #303517 писал(а):
Жду ваших комментариев.
Уважаемый Padawan!

Было бы удивительно, если бы получилось что-то другое.

А относительно комментариев - для меня это сложно так сразу - распечатал - с большим удовольствием разбираюсь - только после этого смогу комментировать более серьезно. Пока могу только сказать, что идея очень здравая - зачем мудрить со всякими гамильтоновыми системами и скобками Пуассона (которые большинство физиков ИМХО или не проходили или забыли), когда можно пойти по стандартному пути - от уравнений для ускорения.

С уважением,
vek88

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 278 ]  На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 19  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Gleb1964


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group