PadawanУ нас идет интенсивный процесс поска "равновесного мироощущения". Разумеется, при этом нас носит туда сюда в окрестности равновесной точки. Надеюсь, однако, что процесс сходится к равновесию. С учетом всего этого у меня два предложения.
1. Давайте пока максимально упростим задачу - пусть у нас
одинаковые частицы. Тогда ИМХО мы вправе требовать, чтобы уравнения движения выглядели одинаково, в т.ч. независимо от нумерации частиц. Я понимаю, что это не кванты, но тем не менее было бы странно для двух одинаковых классических частиц видеть вектор силы несимметричным по отношению к ним.
2. Давайте "сдемпфируем" наш "автоколебательный" процесс поиска и постараемся точно понять - нужно или не нужно что-то еще. Я вот, например, шарахнулся в крайность и сказал, что мы можем сразу в фазовом пространстве (координаты, импульсы) построить представление группы Галилея. Нет, не можем так просто для
взаимодействующих частиц (для свободных нет проблем, но это тривиально и нам не интересно).
Так что ИМХО Ваше предложение, сформулированное в виде:
дано фазовое пространство - найти наиболее общий вид дифференциальных операторов в этом пространстве, представляющих алгебру Галилея, попрежнему актуально. Так что мы ИМХО зря напугали друг друга.
Предлагаю Вашу идею все-таки довести до конца. Кстати, а что такое собки Пуассона? Это ведь тоже дифференциальные операторы специального вида, когда коэффициенты перед производными являются функциями специального вида (и поэтому автоматически приводят к гамильтонову формализму). Но мне не понятно - эти операторы обязательно такие?
С учетом сказанного я попробую снова аккуратно и без паники рассмотреть случай
для
одинаковых частиц в фазовом пространстве
Но уже не постулируя операторы в виде скобок Пуассона, а попытаюсь найти наиболее общий вид дифференциальных операторов.