Если уравнение (5а) не является уравнением с целыми коэффициентами, то число
будем называть «возможным рациональным корнем» этого уравнения
Не годится. У Вас
-целые числа, с самого начала и до этого места и тогда это уравнение имеет целые коэффициенты. Очень нехорошо вдруг менять содержание определения, допуская нецелые коэффициенты, после всего лишь полустраницы текста.
аналогично, с уравнением третьей степени.
Если Вам обязательно нужны уравнения такого вида с нецелыми коэффициентами, то рекомендую изменить для них обозначения. Чтобы не мучаться с индексами, советую такой вариант.
------------------------------
Наряду с уравнениями (5а,5б), мы будем рассматривать аналогичные уравнения с нецелыми коэффициентами. Если
- произвольные числа, то положительный корень уравнения
обозначим через
и представим его в виде
Аналогично, для нецелой версии уравнения (5b),
положительный корень
обозначим через
и представим его в виде
-----------------------------------------------
преимущества такой записи. Не меняются определения, не меняется
уравнение, неразрешимость которого Вы хотите дооказать.
То, что раньше Вы называли
становится простым
, числа в 'базовом ряде' станут обозначаться
, получается большая экономия на индексах, которых у вас и без того потом много.. Совсем будет хорошо, если Вы даже в том, что написано, поменяете
на
,
на
, и тп.тогда в базовом ряде у вас все будет обозначаться маленькими буквами, а в 'приведенном'- одноименными большими буквами.
То есть
Цитата:
Вводим число
.
Отсюда:
. (3a)
Из (2a) и (3a):
. (4a)
Возведя левую и правую части (4a) в степень
, получаем уравнение:
(5a)
Если пара
принадлежит системному множеству, то это уравнение должно иметь целое решение
, которое должно быть делителем числа
. Запишем его в виде
, где
- рациональное число.
Если пара
принадлежит бессистемному множеству,
то, предположив, что корень
уравнения (5a) иррационален, мы все равно запишем его в виде
, но число
уже иррационально.
Далее, мы рассмотрим уравнение
(2b). Положим
.. После возведения в куб, получаем:
(5b)
Мы ищем рациональные корни уравнения (5b)
(мы намерены доказать, что такого корня, в действительности, нет)
Поскольку это уравнение с целыми коэффициентами, то известно, что все рациональные корни являются целыми. Кроме того, они содержатся среди делителей свободного члена уравнения. То есть
должно быть делителем числа
. Если, действительно, такой целый корень
существует, то обозначим
, где
некоторое рациональное число.
В тексте же, который я написала в начале, вернуться к Вашим m, k.
по поводу слов 'возможный рациональный корень' непонятен смысл. я понимаю, что для уравнения с целыми коэффициентами, есть набор возможных целых корней, делителей свободного члена, и поиск целого корня сводится к проверке этих делителей. Однако, для уравнения с иррациональными коэффициентами никакого похожего правила поиска рациональных корней нет. Так что если Вы хотите пользоваться словами 'возможный рациональный корень', нужно дать убедительное объяснение, чтобы не вводить читателей в заблуждение.
Добавлено спустя 4 минуты 43 секунды:
ВСЕМ
Поймите меня правильно, коллеги, готовые меня осудить за зряшний расход электронов. Конечно, я и на секунду не верю, что СЕМЕН докажет ВТФ своими методами. Однако, мне представляется полезным, как для СЕМЕНА, так и для других читателей, опытом не обремененных, продемонстрировать процесс окультуривания текста, имеющего отношение к математике.