Правильно ли я понял, что таким витиеватым образом Вы пытаетесь намекнуть, что для Вас рациональное число - это класс эквивалентности пар из целого и положительного целого числа?
Пар из целого и целого - стандартная конструкция поля частных.
Т.е. записи вида
,
,
и.т.д. с Вашей точки зрения - это всё "представления" одного и того же рационального числа.?
Да. Как и
,
и тд.
Так тоже можно, но зачем, если сформулировать условие "не имеют общих делителей" проще?
Мне сложнее (причем, на самом полном серьезе сложнее - я это не ради полемики произношу). Плюс мне сама конструкция поля частных нравится - она универсальная. Давайте прикинем на уровне интуиции, что мы вообще хотим от поля частных? Довольно очевидно, что мы хотим в некотором смысле минимально расширить целостное кольцо до поля. Сделать что-то типа свободного поля. Но, во-первых, свободное поле было бы, если бы мы конструировали поле из голого множества. Во-вторых, свободных полей не бывает (
здесь я кратко обрисовал почему). Короче говоря, нам нужно не максимально свободное поле, а как бы свободное "по модулю кольцевой структуры" (точно так же как от группы Гротендика мы хотим не максимально свободную группу, а как бы свободную по модулю структуры подлежащего моноида). Уже из этих интуитивных соображений все понятно: нам нужен левый сопряженный функтор к забывающему
(последняя - категория целостных колец с мономорфизмами в качестве стрелок). Почему
, а не просто
? Очевидно: нам же вложение нужно, а не просто какая-то функция, т.е. наша универсальная стрелка должна быть мономорфизмом. Ну и плюс тот факт, что в
тупо нету универсальной стрелки из каждого кольца в поле.
Короче говоря, тут выигрыш во всех смыслах: красота, общность, единообразность (у Вас объекты разных сортов, тут - одного) и интуитивная понятность.
Кстати, а вот эта Ваша запись про
, это тоже "представление"?
Пусть
Нет, это определение. Не забывайте, что у меня
(носитель) - конкретное множество. Оно уже построено, и про него уже доказано, что оно континуальное и непрерывное.
Это я к тому, что
под эту запись тоже подходит.
Не подходит из элементарных теоретико-множественных соображений - носители разные (как множества).
Вы всё ещё не дали полноценного определения
и можете попасть в ту же ловушку, когда оказалось, что возможно определение двух разных таких
, отличающихся только порядком. Потому что на настоящем
должна выполняться аксиома непрерывности, согласованная с порядком, которая не позволит Вам изменить порядок.
Давайте я догадаюсь. Вы берете
и
и рассматриваете не их (как множества), а естественные интерпретации какой-нибудь сигнатуры типа
на них. И потом говорите мне, что они (интерпретации) элементарно эквивалентны. А значит, я не могу отличить одну от другой и мое определение плохое. Угадал? По-моему, учитывая то, что я написал в этом сообщении выше, понятно, почему этот аргумент не проходит. Но на всякий случай разверну подробнее:
Не все в этом мире формалисты. Формалист - это не в смысле любитель строгости (я-то как раз строгость люблю). Формалист - это тот, кто на все смотрит как на формальные теории (вот Вы, например). Элементарная эквивалентность интерпретаций, о которых я написал Выше - это артефакт формализма. Мы намеренно взяли супер слабые средства (посмотрите на сигнатуру), и потом удивляемся: "Почему это
и
перестали отличаться...". Так мы сами к этому пришли своими собственными усилиями, загнав себя в такие скованные рамки такой сигнатуры. Просто Вы который раз уже почему-то упускаете из виду, что на меня все эти формалистские заморочки не работают - у меня в кармане вся теория множеств.
Нет, так не пойдёт. Обозначения
и
заняты обозначением элементов
Вот, опять - формалистские заморочки. Это у Вас все теории формальные и любая запись - строчка, построенная по супер строгим правилам. У меня вообще полунаивная теория множеств. Я могу как угодно что угодно переобозначать (доказав перед этим "взаимозаменяемость на письме" нужных мне констант и операций) и все будет корректно. Просто оно не будет
формально.
Хотя при Вашем подходе получится ещё посложнее.
Разумеется. Но если мы доказали все нужные нам вложения, то можно спокойно "отождествить", например, ту же вещественную и комплексную единицу. Я еще раз скажу - я не против идеи отождествления. Просто я к ней более строго подхожу и явно проговариваю все вложения, все под/над структуры и явно доказываю теоремы, что и как можно переобозначать и заменять на письме.