2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19, 20 ... 22  След.
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 11:26 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
epros в сообщении #1605468 писал(а):
Так без специальных усилий в теории множеств не удастся построить всю цепочку множеств $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$, независимо от того, является ли каждое из них надмножеством предыдущего.
Это тоже правда.
epros в сообщении #1605468 писал(а):
это незначительное усложнение, зато получим $\mathbb{Z} \subset \mathbb{Q}$
А еще можно договориться что $\subset$ в подобных контекстах означает другое.

Такие ухищрения всё равно далеко не уведут - я плохо представляю, как сделать чтобы например оказалось $\mathbb Q[\sqrt 2][\sqrt 3] = \mathbb Q[\sqrt 3][\sqrt 2]$. И чтобы они оба оказались именно подмножествами $\mathbb R$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 11:37 


23/02/12
3372
mihaild в сообщении #1605403 писал(а):
vicvolf в сообщении #1605386 писал(а):
$\mathbb R,\mathbb C$ - это обозначения соответствующих множеств, а не полей
Каких "соответствующих"? Вообще $\mathbb R$ иногда обозначает поле, а иногда носитель этого поля (так же как и с многими другими алгебраическими структурами), это не слишком большая проблема.
Проблема, это когда говорят об алгебре (в частности поле) и носителе (множестве) одновременно, а обозначают их одинаково.
mihaild в сообщении #1605403 писал(а):
vicvolf в сообщении #1605386 писал(а):
то доказываете, что над элементами данного множества выполняются операции поля
Что, простите? Какого всё же множества - поля или носителя?
Вот видите уже непонятно. Не надо поле называть множеством. Поле - это алгебра, также как кольцо, группа ....Алгебра включает в себя носитель (множество) и в данном случае одну или две бинарные операции. Впрочем Вам это прекрасно известно. Посмотрите хотя бы у Нечаева, о котором уже здесь говорилось, на стр. 21, 22 об отличии множества натуральных чисел от системы натуральных чисел.https://uch-lit.ru/matematika-2/dlya-st ... 1667862905
Цитата:
Что такое операции?
Например, бинарные операции. Я уже писал выше.
EminentVictorians в сообщении #1605401 писал(а):
Операции и отношения - это тоже множества. А потом все эти множества собираем в упорядоченный кортеж, который тоже множество. Он и будет "алгебраической структурой".
Будем говорить так. Носитель - это основное множество. Совокупность операций и отношений - это тоже множество. Оба множества можно запихнуть в кортеж, но суть от этого не меняется. Носитель - это множество, а операции и отношения - это разрешенные действия над элементами этого множества. Моя основная мысль в Ваших терминах, что не надо носитель и алгебраическую структуру обозначать одинаково. Это принципиально разные вещи.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 12:03 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
vicvolf в сообщении #1605477 писал(а):
Проблема, это когда говорят об алгебре (в частности поле) и носителе (множестве), а обозначают их одинаково
Это проблема, но небольшая. И, хотя она и приводит к созданию тем вроде этой, меньшая, чем если постоянно везде требовать упоминать носитель.
vicvolf в сообщении #1605477 писал(а):
Не надо поле называть множеством. Поле - это алгебра, также как кольцо, группа
А, я кажется понял. У Вас (возможно и Нечаева) нестандартная терминология. Вы почему-то называете "носитель" множеством, а кортеж (носитель, первая операция, вторая операция) называть множеством отказываетесь. В более общепринятом варианте, которого я предлагаю придерживаться, операции, носитель, кортеж из них - это всё множества.
Естественно толку от этого не очень много, и рассматривать алгебраическую структуру (кортеж) как множество обычно не очень полезно. Поэтому на практике часто одинаково обозначают структуру и носитель.
vicvolf в сообщении #1605477 писал(а):
Алгебра включает в себя носитель (множество) и в данном случае одну или две бинарные операции
И сама тоже является множеством (в общепринятом смысле). Страница 21 по вашей же ссылке.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 17:41 
Аватара пользователя


22/07/22

897
Я правильно понимаю, что на $R$ у нас уже есть естественное положительное направление, а на $R+0i$ нет? :roll:

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 18:46 


22/10/20
1206
epros в сообщении #1605427 писал(а):
mihaild в сообщении #1605425 писал(а):
А носитель у поля какой?

Эмм, любое надмножество $\mathbb{R}$, содержащее все $a+ib$ и только их, где $a \in \mathbb{R}, b \in \mathbb{R}$.

Лично мне вообще не понятно.

epros, можете строго сформулировать, какой конкретно носитель? Вещественные числа $\cup$ строчки вида $a + ib$ где $a \in \mathbb{R}, b \in \mathbb{R}\backslash\{0_\mathbb R\}$ - так что ли?

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 19:28 


23/02/12
3372
mihaild в сообщении #1605481 писал(а):
Естественно толку от этого не очень много, и рассматривать алгебраическую структуру (кортеж) как множество обычно не очень полезно. Поэтому на практике часто одинаково обозначают структуру и носитель.
Я бы даже сказал, что не только пользы нет, но есть существенный недостаток - можно перепутать. Поэтому это совсем не объясняет, зачем делать это. Чтобы сократить количество обозначений, но все равно потом приходится писать, что имеется в виду не вся алгебраическая структура, а носитель. А так допустим обозначим: $A$ - алгебраическая структура и $A^*$ - носитель структуры - всего одна звездочка и все ясно.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 19:46 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
vicvolf в сообщении #1605539 писал(а):
Поэтому это совсем не объясняет, зачем делать это
Всегда делают. В конце концов, знаки операций используются одни и те же для разных структур, и это никого не сбивает, хотя множества под ними тоже разные.
vicvolf в сообщении #1605539 писал(а):
А так допустим обозначим: $A$ - алгебраическая структура и $A^*$ - носитель структуры - всего одна звездочка и все ясно
Для случая, когда надо различать, можно писать $A$ - носитель, $\langle A, +_A, \cdot_A\rangle$ - структура. Но т.к. почти всегда на множестве $A$ рассматривается только одна операция сложения, то $+_A$ писать избыточно, пишут просто $+$.
И т.к. сам кортеж $\langle A, +_A, \cdot_A\rangle$ мало зачем нужен, то его как-то отдельно обозначать смысла нет.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 20:41 


23/02/12
3372
mihaild в сообщении #1605544 писал(а):
Для случая, когда надо различать, можно писать $A$ - носитель, $\langle A, +_A, \cdot_A\rangle$ - структура. Но т.к. почти всегда на множестве $A$ рассматривается только одна операция сложения, то $+_A$ писать избыточно, пишут просто $+$. И т.к. сам кортеж $\langle A, +_A, \cdot_A\rangle$ мало зачем нужен, то его как-то отдельно обозначать смысла нет.
Вы один раз допустим указали структуру $A\langle A^*, +_A, \cdot_A\rangle$, а далее в ссылках на структуру просто указываете одну букву $A$, а ссылках на носитель - одну букву $A^*$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 21:28 
Заслуженный участник
Аватара пользователя


28/09/06
10983
EminentVictorians в сообщении #1605536 писал(а):
epros, можете строго сформулировать, какой конкретно носитель? Вещественные числа $\cup$ строчки вида $a + ib$ где $a \in \mathbb{R}, b \in \mathbb{R}\backslash\{0_\mathbb R\}$ - так что ли?

Я же приводил пример:
epros в сообщении #1605468 писал(а):
брать в качестве носителя $\mathbb{C}$ не $\mathbb{R} \times \mathbb{R}$, а $(\mathbb{R} \times \mathbb{R} \setminus \mathbb{R} \times \{0\}) \cup \mathbb{R}$

Но можно придумать и кучу других способов построить носитель $\mathbb{C}$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 21:51 


22/10/20
1206
Вот здесь:
epros в сообщении #1605427 писал(а):
любое надмножество $\mathbb{R}$, содержащее все $a+ib$ и только их, где $a \in \mathbb{R}, b \in \mathbb{R}$.
epros в сообщении #1605433 писал(а):
Скажем, есть у нас числа $2$ и $3$, а я хочу доопределить число $2+3i$. Я возьму какой-нибудь камень из прибрежной гальки, напишу на нём "$2+3i$" и буду считать, что теперь это и есть это самое число.

идет речь о строчках вида $a+ib$.

Здесь:
epros в сообщении #1605573 писал(а):
Я же приводил пример:
epros в сообщении #1605468 писал(а):
брать в качестве носителя $\mathbb{C}$ не $\mathbb{R} \times \mathbb{R}$, а $(\mathbb{R} \times \mathbb{R} \setminus \mathbb{R} \times \{0\}) \cup \mathbb{R}$
уже про хитрое множество, одни элементы которого - действительные числа, а другие - некоторые упорядоченные пары действительных чисел.

Это разные же вещи.

Поэтому я и решил еще раз переспросить, чтобы точно понять, какой у Вас носитель. Пока не понял.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 22:06 
Аватара пользователя


22/07/22

897
mihaild
А что насчет моего вопроса? :roll:

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение17.08.2023, 09:41 


23/02/12
3372
Doctor Boom в сообщении #1605531 писал(а):
Я правильно понимаю, что на $R$ у нас уже есть естественное положительное направление, а на $R+0i$ нет? :roll:
Смотря о каком составе лемм, определяющих поле комплексных чисел, идет разговор. Я, например, определял поле комплексных чисел следующим образом:
vicvolf в сообщении #1605010 писал(а):
Пусть имеется поле действительных чисел $F$ с множеством $R$. Тогда $K$ является полем комплексных чисел c множеством $C$, если выполняются условия:
1. $F$ является подполем $K$.
2. Cуществует элемент $i \in C$ такой, что $i^2=-1$.
3. Каждый элемент $z \in C$ представим в виде $z=a+bi$, где $a,b \in R$.
В этом случае при $b=0$ получаем, что $z=a$, т.е. действительному числу. А множество действительных чисел упорядочено.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение17.08.2023, 11:02 
Заслуженный участник
Аватара пользователя


28/09/06
10983
EminentVictorians в сообщении #1605578 писал(а):
Вот здесь:
...
идет речь о строчках вида $a+ib$.

"Строчки вида $a+ib$" в силу смысла упоминаемых в них операций сложения и умножения, а также смысла упоминаемых в них операндов указанных операций, являются элементами того поля, которое строится. Природа оных элементов не уточняется. Пусть будут хоть камнями, хоть множествами.

EminentVictorians в сообщении #1605578 писал(а):
Здесь:
...
уже про хитрое множество, одни элементы которого - действительные числа, а другие - некоторые упорядоченные пары действительных чисел.

А здесь сказанное выше уточняется примером, в котором элементы того поля, которое строится, определяются конкретным (с точки зрения теории множеств) образом.

Есть и другие способы построить всю цепочку множеств $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$, каждое из которых является надмножеством предыдущего. Я продемонстрировал способ, при котором надмножество определяется из разнородных элементов. Этот способ позволяет соединить в одном множестве элементы $1$ и $\pi \cdot i$.

А можно каждый раз переопределять ранее построенные множества. Тогда при определении $\mathbb{Z}$ объект $1$ переопределится в $+1$, при определении $\mathbb{Q}$ - в $\frac{+1}{1}$, при определении $\mathbb{R}$ - в $((-\infty,\frac{+1}{1}],(\frac{+1}{1},+\infty))$, при определении $\mathbb{C}$ - в $(((-\infty,\frac{+1}{1}],(\frac{+1}{1},+\infty)),((-\infty,\frac{0}{1}],(\frac{0}{1},+\infty)))$.

Второй способ тоже вполне легитимен, только я что-то никогда не видел, чтобы единицу записывали как $(((-\infty,\frac{+1}{1}],(\frac{+1}{1},+\infty)),((-\infty,\frac{0}{1}],(\frac{0}{1},+\infty)))$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение17.08.2023, 11:14 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
Doctor Boom, а что в точности такое $\mathbb R + 0i$?

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение17.08.2023, 12:12 


22/10/20
1206
epros в сообщении #1605615 писал(а):
"Строчки вида $a+ib$" в силу смысла упоминаемых в них операций сложения и умножения, а также смысла упоминаемых в них операндов указанных операций, являются элементами того поля, которое строится. Природа оных элементов не уточняется. Пусть будут хоть камнями, хоть множествами.
У меня мозг закипает от таких текстов...

Вот смотрите. Для меня, если где-то есть $+$, значит это операция, которая суть функция вида $M^2 \to M$, а значит уже есть носитель $M$ и он был определен до того, как мы определили операцию. Вы же определяете носитель и при этом спокойно оперируете значком $+$. Значит этот вариант отпадает.

Я могу смотреть на записи вида $a+ ib$ (точнее даже $a+ i \cdot b$) , как на термы в формальной теории комплексных чисел. Но тогда определение комплексных чисел будет включать в себя алфавит, арности, нелогические аксиомы, формальное исчисление предикатов для данного языка и всякую такую матлогику. Тут вообще множеств нету. У Вас множества есть (Вы же используете как минимум слова "множество", "надмножество", "носитель"), значит это тоже не наш случай.

Когда Вы говорите о камнях, на которых написаны надписи вида $a+ib$, самый комфортный для меня способ на это смотреть - буквально как на множество камней, на которых что-то нашкрябано. Да, это будет уровень строгости - "школьная" теория множеств. В которой есть множества птичек, синичек и все такое. Я сам в обычной жизни использую что-то типа неформальной ZFC или NBG, поэтому для себя я бы построже сформулировал, но это по крайней мере мне понятно.

Но у Вас все гораздо более странно. Есть "записи" вида $a+ib$ и есть их "природа" в виде камней или множеств. Я могу понять "природу" - как физический носитель надписи. Но тогда множества не будут "природой", а у Вас они могут ей быть. Короче, все равно ничего не понятно.

Но допустим я все-таки смог ввести себя в это измененное состояние сознания и понял все эти рассуждения про строчки и их природу. Тогда у Вас $2+i3$ будет являться комплексным числом, а $2+3i$ - не будет. (записи-то у Вас вида $a+ib$, а не $a+bi$) И как у Вас это решается?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 321 ]  На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19, 20 ... 22  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group