2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 15  След.
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение29.11.2022, 19:01 
Заслуженный участник
Аватара пользователя


26/01/14
4866
Mitela в сообщении #1571899 писал(а):
«Страдаю ли я фигней?» - переформулирую: каков шанс, что через три года, я дойду до материала четвёртого-пятого семестра и/или доблестно не «споткнусь» и больше не «встану», после очередной темы?

Разумеется, я не цифры прошу писать. Здесь, на форуме, были люди с схожими проблемами, и мне любопытно- как они кончили?

Я не хочу заниматься заведомо проигрышным делом.
Мне кажется, заниматься тем, что интересно - в принципе не может быть проигрышным делом.

Возможно, Вы доберётесь до четвёртого-пятого семестра. Возможно, продвинетесь и дальше и станете, например, известным учёным. А может быть, не добравшись и до третьего семестра, поймёте, что это "не ваше" и лучше Вам посвятить жизнь чему-то другому. В любом случае, это будет полезный опыт. А если Вам сейчас кто-то скажет, что вероятность последнего исхода 99% - разве это повод бросать математику? Во-первых, точные вероятности никто не считал, во-вторых, может оказаться так, что Вы как раз относитесь к одному проценту, а не к 99-ти, и если Вы сейчас бросите математику не попробовав достичь своего максимума, эта мысль так и будет преследовать Вас дальше. Что в этом хорошего?

Возможна, однако, и такая ситуация: может быть, Вы сознательно или бессознательно ищете повод бросить надоевшие Вам занятия математикой и спрашиваете для этого? Тогда просто бросайте не спрашивая.

Нащупать свой путь можно только так - заниматься тем, что кажется осмысленным в данный момент. Что там будет в будущем - покажет будущее. У Вас же сейчас нет необходимости срочно раз навсегда выбрать свой дальнейший путь. Так что пробуйте, а если не получится - то ничего страшного, можно будет выбрать что-то другое.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение29.11.2022, 19:03 
Заслуженный участник
Аватара пользователя


15/10/08
12611
Mitela в сообщении #1571876 писал(а):
исходя из всего написанного, - какие бы основные советы Вы могли бы дать?
Честно? Купите кота. Именно кота, с кошкой номер не пройдёт.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение30.11.2022, 04:41 


10/03/16
4444
Aeroport
Утундрий в сообщении #1571911 писал(а):
с кошкой номер не пройдёт


Всячески стараюсь не думать, какой именно номер имеется в виду.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение01.12.2022, 22:38 


08/11/22
53
мат-ламер, боюсь, ничего не вышло. Я приложил мало усилий, три для - несерьезно. Я бы с радостью ещё подумал, но, не сочтите за попытку вызывать сострадание, она не даёт мне спать, потому, откровенно говоря, - уже дурно физически.


Попытка обыденно высчитать предел к ни к чему не привела, точнее постоянно приводила к неопределенностям.

Теорему о сложной функции я самостоятельно не открыл, а пользуясь чужими результатами - можно сразу вольфрам включать.

Затем заметил, что производная степени, при некотором аргументе равна производной x, и, как следствие, интуиция подсказывает, что и производные самих функций е^x и e^-1/x^2 равны в этой точке, а дальше это разница растёт, как некий поддающийся вычислению член. Но, скорее всего, это просто какой-нибудь тавтологический бред.

Без производной же рассуждать про дифференцируемость смысла нет.

-- 01.12.2022, 22:57 --

Mikhail_K,
Не нравится и не нравится одновременно.

Вам знакома чувства, когда хочется лечь, а ляг - встать? Никого удовольствия я от математики не получаю, за исключением в виде редких успехов, но стоит поклясться больше ее не касаться, как, спустя день, рука вновь к ней тянется. Я бы сказал так: она меня очаровывает, но не даётся. Это похоже на нераздельную любовь. Правда, здесь аналогия кончается, ибо у девушек только лица отличаются, а у предметов - суть и нельзя просто так полюбить нечто другое - у него суть иная. Тем более, сдаваясь, даже толком не начав, можно вообще все предметы побросать.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 09:00 


14/01/11
3082
Mitela в сообщении #1572212 писал(а):
Теорему о сложной функции я самостоятельно не открыл, а пользуясь чужими результатами - можно сразу вольфрам включать.

Вообще-то вся наука построена на использовании чужих результатов. В известной фразе Ньютон говорил, что достиг выдающихся результатов лишь по той причине, что стоял на плечах гигантов. Вы хотите самостоятельно переоткрыть всю математику, на что человечеству понадобились тысячелетия?

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 09:32 
Заслуженный участник
Аватара пользователя


30/01/09
7142
Mitela в сообщении #1572212 писал(а):
мат-ламер, боюсь, ничего не вышло. Я приложил мало усилий, три для - несерьезно. Я бы с радостью ещё подумал, но, не сочтите за попытку вызывать сострадание, она не даёт мне спать, потому, откровенно говоря, - уже дурно физически.


Попытка обыденно высчитать предел к ни к чему не привела, точнее постоянно приводила к неопределенностям.

Уже хорошо, что вы ответили, а не исчезли из форума. Задачу разберём чуть позже. У меня сейчас недостаток времени. Решать можно примерно так (ограничимся первой производной). Доказывать будем существование производной в нуле. То, что функция чётна, намекает на то, что эта производная равна нулю (если существует). 1) Распишем производную в нуле по определению. Это некий предел. 2) Сделаем подстановку $t=1 \slash x$ . 3) Полученный предел вычислим по правилу Лопиталя. Попытайтесь пока сами. А я чуть позже присоединюсь.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 10:03 


08/11/22
53
Sender, нет, я просто не хочу использовать чужое решение. С тем же успехом, я мог бы просто воспользоваться калькулятором.

Вообще, я изначально и пришёл к этому решению, но что не доказано - то неважно. Я представил экспоненту, как функцию от некоего абстрактного ползунка, а производную его - скорость этого ползунка. Интуитивно, понятно, что и производная функции зависит только от производной ползунка. Дальше, попытался сравнить скорости ползунка обычной экспоненты и предложенной. Очевидно, что скорость предложенного, в какой-то момент, совпадает и со скоростью ползунка обычной экспоненты, а дальше это разница считается очень легко. А дальше я рассуждал примерно так: это разница как-то влияет на функцию, скорее всего, влияет не делением на неё, сложение или вычитанием, а - умножением.

Ну, одно дело просто чушь сказать, аля: «мне показалось» - другое дело это чушь обосновать.
А учитывая длительность интуитивных рассуждений, разборка в них займёт в пять раз больше времени, чем их нагромождение, плюс, огромна вероятность, что я где-то ошибся, так что я решил не идти по этому пути.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 11:01 


19/05/20
29
Mitela
Положим, вы не знаете университетскую математику вообще (судя по постам выше, в частности, "решениям" задач про производную и про гомеоморфизм), но хотите заниматься ею достаточно серьезно. С чего-то начинать в любом случае придется. Какие школьные задачи продвинутого уровня (и выше) вы можете решить? Не какие-нибудь там "синусы", а просто задачи на комбинацию школьной техники и сообразительности как таковой.


В частности, сможете ли вы решить какие-нибудь задачи из этого списка?


1. В игре Стратеги онлайн за победу дают либо 7, либо 10 очков, а за поражение снимают 4 очка. Вася набрал 89 очков. За какое наименьшее число игр он мог набрать их?


2. Многочлен $P(x)$ дает при делении на $x-2$ остаток 2, а при делении на $x-3$ --- остаток 3. Какой остаток дает $P(x)$ при делении на $(x-2)(x-3)$?


3. Разложите на множители: а) $x^8-x^4+1$; б) $x^5+x+1$; в) $x^6+x^4-x^2-1$.


4. Известно, что $x^3-y^3 \leqslant 2$. Следует ли из этого, что $x-y \leqslant  2$?


5. Вычислите сумму $\sum\limits_{n=0}^{\infty}n^2 q^n $ для $-1<q<1$.

6. а) Вычислите $ \cfrac{1}{x_1^5}+\dfrac{1}{x_2^5}$, где $x_1,x_2$ --- корни уравнения $x^2-3x+1=0$.
б) Вычислите сумму кубов корней уравнения $x^3-3x+1=0$.


7. Решите уравнение ${\displaystyle{x^{x^{\sqrt{x}-1}}=\sqrt{x}^{\sqrt{x}^{x-1}} }}$


8. Можно ли конечным набором одинаковых шаров закрыть точечный источник света в пространстве? Другими словами, разместить конечное число одинаковых шаров так, чтобы любой луч с началом в точке-источнике пересекал шар из данного набора.


9. Можно ли разбить трехмерное пространство пятью плоскостями на а) 9; б) 16; в) 17 частей?

10. В единичном кубе отметили 9 различных точек. Обязательно ли найдется пара точек на расстоянии менее а) $11/13$; б) $15/17$?

Это школьный уровень (~10 класс) и даже несложный, я бы сказал. Какие задачи из этих вам очевидны сразу (сможете решить устно)? Какие вы хорошо представляете как решать (не мгновенно и с листочком бумаги)? Какие не представляете вообще как решать? Напишите также, пожалуйста, ваши решения или идеи по ним прямо в эту тему.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 13:13 
Заслуженный участник
Аватара пользователя


30/01/09
7142

(Оффтоп)

Седьмая задача повергла меня в ужас. Я понял, что в школе что-то (типа правил оперирования со степенями) серьёзно недоработал. :-(
Пока писал, вспомнил про логарифмы. Правда, и с ними у меня не всё в порядке. Но на эту тему рассуждать не буду, чтобы не сбивать топик-стартера.


-- Пт дек 02, 2022 14:29:48 --

(Оффтоп)

В качестве бреда. Пишу не для чтения топик-стартером. Вспомнил, что как-то решал восьмую задачу элементарно. Но в данном топике часто упоминался Зорич. И тут подумалось, а нельзя ли тут применить кое-какие мысли из Зорича (или из лекций Шапошникова) на счёт компактности?

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 13:37 


08/11/22
53
Решить всеми Вами предложенное я попытаюсь завтра, а сейчас - мне нужно выговориться (как Вы уже знаете, - это маркер того, что сообщение дальше, в принципе, читать не имеет смысла, и/или забыть, как страшный сон нижеизложенное).


Плюсы можно везде найти. Да, можно все списывать на: «мало читал», «плохо учился» и так далее - Вам это покажется разумным, но я-то знаю, что это не так: я что школьные учебники, в своё время, штудировал; штудировал пять месяцев ВУЗовские - может быть, плохо штудировал, тем не менее, не запомнить ничего - невозможно чисто теоретически. Проблема во мне, и вот это меня пугает.

Прошу, поверьте - математика мне действительно нравится, я не могу ничего с собой поделать, не могу просто так сесть на задницу и ничего не делать. Я должен действовать. Выходит скверно, если не сказать - никак не выходит? - да, но это для меня лишь повод ещё больше стараться. Вот моя проблема: мои старания абсолютно не совпадают с реальностью. Не сочтите меня сумасшедшим, но мир должен мне в сто раз больше, чем я имею.

Да, я сейчас в гневе. А Вы были бы рады, узнав, что реальность развеивает по ветру сотни, а то и тысячи, часов стараний?

Я реагирую остро. Здесь мне не место, но, волею судеб, это единственное место, где я могу выговориться и, самое забавное, - мои бредни кто-то выслушает. Вы вольны ненавидеть, считать меня идиотом, но знайте - я и так каждый день варюсь в неудачах, сложностях и отчаянии, мотивируя себя тем, мол: «это временные трудности, дальше будет лучше», но с каждым днем, я все отчётливее понимаю - нет никого «дальше». У каких-то сплошных идиотов оно есть, не готовых ничего запалить за будущее, а у меня - нет. Я просто надеюсь, что мой подход лишь вначале не даёт плодов, а потом - они сыпятся, как из рога изобилия, иначе - это мой конец.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 13:57 


10/03/16
4444
Aeroport
KoppeKToP в сообщении #1572249 писал(а):
9. Можно ли разбить трехмерное пространство пятью плоскостями на а) 9; б) 16; в) 17 частей?


Принадлежность точки к определенной "части" задаётся последовательностью знаков скалярных произведений с support-векторами каждой (гипер)плоскости. Поэтому на первый взгляд логично было бы предположить, что $m$ гиперплоскостей рассекают $n$-мерное пространство на $2^m$ частей, независимо от его размерности. Но это совершенно точно не так -- я видел формулу [кажется, Галушкин. Нейронные сети], где фигурирует число сочетаний. Как ее получить?

-- 02.12.2022, 14:07 --

Mitela в сообщении #1572284 писал(а):
Вот моя проблема: мои старания абсолютно не совпадают с реальностью. Не сочтите меня сумасшедшим, но мир должен мне в сто раз больше, чем я имею. Да, я сейчас в гневе. А Вы были бы рады, узнав, что реальность развеивает по ветру сотни, а то и тысячи, часов стараний?


Жизнь это на 99% боль и ещё на 1% -- боль, которую мы не заметили, т.к. отвлеклись на какую-то фигню. Приучите организм к боли, как приучают кота к лотку (не потому ли Утундрий советовал завести кота?) -- и будете жить с кайфом

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 14:09 


19/05/20
29
ozheredov в сообщении #1572286 писал(а):
что $m$ гиперплоскостей рассекают $n$-мерное пространство на $2^m$ частей, независимо от его размерности.

Это, конечно же, неправда. Во-первых, вы здесь явно имели в виду набор из $m$ плоскостей общего положения. Тогда это верно только для $m\leqslant n$, т.к. каждый дополнительный разрез может максимум удваивать, и при этом условии удвоение действительно есть. Если же $m>n$, то удвоения уже не будет. Формула для максимального числа кусков можно получить либо двойной индукцией, либо привлекая топологию. Ну или доказать ее индукцией, если она дана свыше.

(Оффтоп)

Сама формула: $S(m,n) = \binom{m}{0}+\binom{m}{1}+...+\binom{m}{n}$.


Но в задаче 9 спрашивается о другом - о возможности разбить на указанное число частей какой-то конфигурацией из плоскостей (вовсе не обязательно конфигурацией общего положения). И этот вопрос (в общем случае) сложнее, чем вопрос о поиске максимума частей. Но здесь все можно сделать руками, что и предлагается продемонстрировать "экзаменуемому".

-- 02.12.2022, 14:15 --

мат-ламер

(Оффтоп)

Что конкретно вы подразумеваете под соображениями компактности для задачи 8 и/или ее обобщения? По-моему, тут все гораздо проще, по крайней мере, простое решение есть, и компактность (чего именно?) там не фигурирует.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 14:28 
Заслуженный участник
Аватара пользователя


30/01/09
7142
KoppeKToP

(Оффтоп)

Ну, я написал "В порядке бреда". Я имел в виду, что из всякого покрытия можно выбрать конечное подпокрытие. К сожалению, тут просто конечное строится. Бред не удался.
KoppeKToP в сообщении #1572249 писал(а):
Какие задачи из этих вам очевидны сразу (сможете решить устно)? Какие вы хорошо представляете как решать (не мгновенно и с листочком бумаги)? Какие не представляете вообще как решать?

Тут надо добавить ещё один пункт: "Сразу не представляю как решать. Но куда копать (куда двигаться) представляю. А там уж как получится." У меня лично по последним двум задачам так. А седьмую задачу так и браться не хочется. Хотя, если бы пораскинул мозгами, может и решил. Но лень. Не в моём духе задача.

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 14:32 


10/03/16
4444
Aeroport
KoppeKToP в сообщении #1572290 писал(а):
Это, конечно же, неправда.

А, типа, не все сочетания знаков возможны, так?

 Профиль  
                  
 
 Re: На стыке математики, психики и юношеского максимализма.
Сообщение02.12.2022, 14:35 
Заслуженный участник
Аватара пользователя


30/01/09
7142
ozheredov в сообщении #1572286 писал(а):
Жизнь это на 99% боль и ещё на 1% -- боль, которую мы не заметили, т.к. отвлеклись на какую-то фигню. Приучите организм к боли, как приучают кота к лотку (не потому ли Утундрий советовал завести кота?) -- и будете жить с кайфом

Может надо в мазохизме попрактиковаться? Может понравится? :D В России за это сейчас не преследуют?

-- Пт дек 02, 2022 15:36:05 --

ozheredov
Не надо подсказывать решения топик-стартеру.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 213 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 15  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group