2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 10, 11, 12, 13, 14, 15  След.
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 09:26 
Аватара пользователя

(DimaM)

Так эта двойка и сверху, и снизу, сокращается.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 09:46 

(EUgeneUS)

EUgeneUS в сообщении #1359458 писал(а):
Так эта двойка и сверху, и снизу, сокращается.
Снизу-то откуда? Сверху от $\Delta v=2v$, а снизу в тангенсе просто $v$.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 09:49 
Аватара пользователя
DimaM

(Оффтоп)

да, Вы правы. Ошибся в устном счете :roll:

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 09:53 
EUgeneUS
Добавлю, что эта задачка подробно разобрана в любимых мной Бутикове, Быкове и Кондратьеве.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 10:17 
Аватара пользователя
для меня это был сюрприз, я честно написал уравнения теории удара а потом все посокращалось
видимо прав fred1996
предлагая считать кин момент относительно точки удара суть эффекта в этом

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 10:45 
Аватара пользователя
DimaM в сообщении #1359469 писал(а):
EUgeneUS
Добавлю, что эта задачка подробно разобрана в любимых мной Бутикове, Быкове и Кондратьеве.

Ото ж. Я эту задачку придумал в 9 классе для городской Олимпиады среди восьмиклассников. А Бутиков потом лекции у нас читал первокурсникам. То бишь мне. Ну то есть придумал то не для Олимпиады, а для занятий в ЮФШ, которые у нас вел тогда Леша Авдеев. Ну а он уже засунул задачку в 8-й класс. В тот год две мои задачки досталсь восьмиклассникам.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 10:50 
fred1996 в сообщении #1359479 писал(а):
Я эту задачку придумал в 9 классе для городской Олимпиады среди восьмиклассников.

Гм, разве тогда задачки могли включать материал, выходящий за пределы школьного курса?

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 10:55 
Аватара пользователя
DimaM в сообщении #1359480 писал(а):
fred1996 в сообщении #1359479 писал(а):
Я эту задачку придумал в 9 классе для городской Олимпиады среди восьмиклассников.

Гм, разве тогда задачки могли включать материал, выходящий за пределы школьного курса?

Ну если честно, ее вставили в урезанном виде. Типа материальная точка падает под углом на плоскость. Удар абсолютно упругий. Дан к-т трения. Сосчитать угол отскока (отражения). А в ЮФШ мы решали конечно и за рамками школьной программы

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 11:04 
fred1996 в сообщении #1359481 писал(а):
Ну если честно, ее вставили в урезанном виде. Типа материальная точка падает под углом на плоскость. Удар абсолютно упругий. Дан к-т трения. Сосчитать угол отскока (отражения).

Понятно. Это другая, более легкая задачка.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 11:16 
Аватара пользователя
А что, динамика вращения твердого тела сейчас не входит в школьную программу?
В Штатах эта тема входит. И на первом туре олимпиады там полно задач на эту тему:
https://www.aapt.org/physicsteam/2015/exams.cfm
Можно посмотреть pdf файлы , которые относятся к первому туру под названием F=ma

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 11:22 
fred1996 в сообщении #1359436 писал(а):
Я предлагаю считать момент относительно точки на плоскости, а не на мяче. wrest
Мой ответ считается по формуле $J\omega_0=J\omega+mvr$, Условие конечного непроскальзывания дает $\omega=v/r$, учитывая $J=\frac{2}{5}mr^2$, окончательно плоучаем $v=\frac{2}{7}\omega_0r$

Поясните пож-ста. Плоскость в момент удара отстоит от центра мяча на $r$, и поскольку момент инерции относительно оси мяча равен $\dfrac{2}{5}mr^2$ то по теореме Штейнера момент инерции мяча относительно точки его касания плоскости будет $\dfrac{2}{5}mr^2+mr^2=\dfrac {7}{2}mr^2$

Тогда переписываем $J\omega_0=J\omega+mvr$ подставляя туда $J=\dfrac {7}{2}mr^2$ и $\omega=v/r$ получаем что $v=\dfrac{7}{9}r\omega _0$ :facepalm:

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 11:32 
Аватара пользователя
wrest
В этой формуле
$L=I_0\omega+mvr$ все переменные относятся к центру масс. Предлагаю в виде упражнения самому доказать эту формулу. Доказательство сродни теореме Штайнера и формуле для кинетической энергии.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 11:38 
wrest в сообщении #1359489 писал(а):
по теореме Штейнера момент инерции мяча относительно точки его касания плоскости будет $\dfrac{2}{5}mr^2+mr^2=\dfrac {7}{2}mr^2$

Через точку касания не проходит мгновенная ось вращения.
Ну и $\dfrac{2}{5}+1\neq \dfrac{7}{2}$.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 11:52 
DimaM в сообщении #1359495 писал(а):
Ну и $\dfrac{2}{5}+1\neq \dfrac{7}{2}$.

:facepalm: если исправить то тем не менее $\dfrac{2}{7}$ в конечном ответе не выйдет а выйдет $\dfrac{7}{12}$
fred1996 в сообщении #1359494 писал(а):
$L=I_0\omega+mvr$ все переменные относятся к центру масс.

Тогда что вы имели в виду когда писали
fred1996 в сообщении #1359436 писал(а):
Я предлагаю считать момент относительно точки на плоскости, а не на мяче.

 
 
 
 Re: Задачки для Фреда
Сообщение07.12.2018, 12:21 
wrest в сообщении #1359503 писал(а):
если исправить то тем не менее $\dfrac{2}{7}$ в конечном ответе не выйдет а выйдет $\dfrac{7}{12}$

Вы либо рассматривайте вращение вокруг мгновенной оси (тогда движение центра масс уже учтено), либо движение центра масс и вращение относительно оси, проходящей через центр масс.
Смешивать не нужно.

 
 
 [ Сообщений: 224 ]  На страницу Пред.  1 ... 10, 11, 12, 13, 14, 15  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group