2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 23, 24, 25, 26, 27
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение31.08.2025, 08:20 
Батороев в сообщении #1700100 писал(а):
Мне оно без надобности.

Потому, что свое доказательство 07.04.21 я считаю корректным.

(Оффтоп)

Батороев в сообщении #1513210 писал(а):
Доказательство бесконечности простых чисел близнецов.

07.04.2021 г.

Обозначения:
$p_{r}$ - простое число, где $r$ – порядковый номер числа в ряду простых чисел.
$p_{s}$ - наибольшее простое число, квадрат которого не превосходит $p_{r}\#$.

$\varphi_{2}(n)$ - мультипликативная функция, значение которой равно* количеству пар близнецов (натуральных чисел с разницей $2$), не превышающих $n$ и в которых оба числа взаимно простые с $n$ ("пары, взаимно простых с $n$"). Для каждого простого числа $p$ функция $\varphi_{2}(p) = p-2$, кроме простого числа $2$, для которого $\varphi_{2}(2)=1$.
Функция $\varphi_{2}(p)$ позволяет удалить два вычета из кольца вычетов простого числа.
В данном рассмотрении производится проверка пар натуральных чисел на выполнение сравнения: $(a_{i}-1)\cdot (a_{i}+1) \equiv 0 \pmod p$ (где $a_i$ - натуральные числа от $1$ до $(p-1)$ ) и удаление таких пар из числа пар, взаимно простых с $p$, т.е. подразумевается удаление двух остатков: $(\pm 1)\pmod p$.


Доказательство:

Используя функцию $\varphi_{2}(p)$ и свойство ее мултипликативности, можно составить новую функцию:

$$L_{2}(p_{r}\#) = \dfrac{\varphi_{2}(p_{s}\#)\cdot p_{r}\#}{p_s\#} \eqno (1)$$

Функция $L_{2}(p_{r}\#)$ определяет количество пар простых-близнецов, расчитанное при допущении (I), что пары, взаимно простых с примориалом, расположены в нем равномерно (2).

Данная функция не учитывает количество пар простых-близнецов, не превышающих $p_{s}$, обозначим их числом $t$ (3).
Так как в действительности распределение пар, взаимно простых с примориалом, неравномерное, то функция $L_{2}(p_{r}\#)$ имеет погрешность относительно числа $(\pi_{2}(p_{r}\#)-t)$, где $\pi_{2}(p_{r}\#)$ - действительное число пар простых-близнецов в примориале $p_{r}\#$.

Для наглядности вышесказанного развернем (1):

$L_{2}(p_{r}\#)=p_{r}\#\cdot\left(1-\frac {1}{2}-\frac{2\cdot \varphi_{2}(2\#)}{3\#}-\frac {2\cdot \varphi_{2}(3\#)}{5\#}..-\frac{2\cdot \varphi_{2}(p_{r-1}\#)}{p_{r}\#}\right)-p_{r}\#\cdot \left(\frac{2\cdot \varphi_{2}(p_{r}\#)}{p_{r+1}\#}+..+\frac{2\cdot \varphi_{2}(p_{s-1}\#)}{p_{s}\#}\right) \eqno(4) $


В выражении (4) число в первой скобке, домноженное на $p_r\#$, соответствует $\varphi_{2}(p_{r}\#)$, т.е. числу пар, взаимно простых с примориалом. Это число достоверное.
Число во второй скобке, домноженное на $p_r\#$ соответствует числу пар, в которых хотя бы одно число кратно простым числам от $p_{r+1}$ до $p_{s}$. Это число в виду допущения (2) является причиной погрешности, поэтому может быть названо "недостоверным числом".

Перепишем (1):

$$L_{2}(p_r\#)= \varphi_{2}(p_r\#) \cdot \dfrac{\varphi_{2}(p_s\#)\cdot p_r\#}{\varphi_{2}( p_r\#) \cdot p_s\#}\eqno (5)
$$

Дробный коэффициент в (5): $u=\dfrac{\varphi_{2}(p_s\#)\cdot p_{r}\#}{\varphi_{2}(p_r\#)\cdot p_{s}\#}$ показывает, в какой пропорции в примориале количество пар простых-близнецов меньше количества пар, взаимно простых с примориалом.
Если рассмотреть действительный коэффициент $u_{0}$ для примориала $p_{r}\#$, то также можно записать зависимость:
$$\pi_{2}(p_{r}\#)-t=\varphi_{2}(p_{r}\#)\cdot u_{0}$$

Расчет коэффициента $u_{0}$ на практике сопряжен с большими трудностями, связанными с точным подсчетом числа вхождений простых от $p_{r+1}$ до $p_{s}$ в правую скобку выражения (4). Для очень больших примориалов задача практически невыполнимая.

Но за то, можно определить теоретические границы коэффициента $u$:

1. Максимальное теоретическое значение $u_{\max}=1\eqno (5.1)$
Наступает в случае отсутствия простых на интервале от $p_{r}$ до $\sqrt {p_{r}\#}$. Хотя примером такого примориала может служить примориал $5\#$, в котором $\pi_{2}(5\#)-t=\varphi_{2}(5\#)$, но при дальнейшем увеличении примориалов такая ситуация повториться не может (математиками доказаны значительно меньшие интервалы, на которых присутствуют простые числа). Поэтому $u_{\max}=1$ является теоретической верхней границей рассматриваемого коэффициента.

2. Для определения теоретической нижней границы коэффициента $u_{\min}$ введем еще одно допущение (II):

На интервале от $p_{r}$ до $p_{s}$ все нечетные числа - простые-близнецы. При этом $p_{s}$ максимально приближено к $\sqrt {p_{r}\#}$.

Допущение (II) предполагает равномерность распределения чисел от $p_{r}$ до $p_{s}$, поэтому использование записи коэффициента в (5) правомерно:
$$u_{\min}= \dfrac{\varphi_{2}(p_s\#)\cdot p_r\#}{\varphi_{2}( p_r\#) \cdot p_s\#}\egno (5.2)$$
После сокращения общих членов в числителе и знаменателе, получаем:

$$ u_{\min}= \dfrac {p_{r+1}-2}{p_{r+1}}\cdot\dfrac {(p_{r+1}+2)-2}{p_{r+1}+2}... \cdot \dfrac{p_{s}-2}{p_{s}} =\dfrac {p_{r+1}-2}{p_s}=\dfrac {p_{r}}{p_{s}} \eqno (5.2.1) $$

(в (5.2.1) все числа числителя, кроме первого, сокращаются с числами знаменателя, кроме последнего).

Полученное в (5.2.1) значение $u_{\min}$ является нижней теоретической границей рассматриваемого коэффициента. Действительно, в реальности такое распределение простых-близнецов не возможно** (например, каждое третье число кратно $3$), поэтому исчезновение любого числа из ряда, описанного в допущении (II) (т.е. появлении интервалов, больших $2$) повлечет к уменьшению числа слагаемых в правой скобке (4) (или исчезновению дробей, меньших единицы в (5.2.1) ) и соответственно, увеличению коэффициента $u_{0}$ по сравнению с $u_{\min}$.

Полученная нижняя теоретическая граница $u_{\min}$ позволяет определить и нижнюю теоретическую границу количества пар простых-близнецов в примориале $p_{r}\#$:
$$\pi_{2}(p_{r}\#)_{\min}-t= \varphi_{2}(p_{r}\#)\cdot u_{\min}\eqno (6)$$
С учетом вышесказанного: $$\pi_{2}(p_{r}\#)>\pi_{2}(p_{r}\#)_{\min}\eqno (7)$$
Так как $p_{s}<\sqrt {p_{r}\#}$, то:
$$\pi_{2}(p_{r}\#)_{\min}-t= \varphi_{2}(p_{r}\#)\cdot \dfrac {p_{r}}{p_{s}}>\varphi_{2}(p_{r}\#)\cdot \dfrac {p_{r}}{\sqrt {p_{r}\#}}\eqno (8) $$
Начиная с $p_{r}\#=7\#$, число:
$$p_{r}\cdot \dfrac {\varphi_{2}(p_{r}\#)}{\sqrt {p_{r}\#}}=p_{r}\cdot \dfrac {1}{2}\cdot \dfrac {3-2}{\sqrt{3}}\cdot \dfrac {5-2}{\sqrt{5}}\cdot \dfrac {7-2}{\sqrt {7}}>1$$
и монотонно возрастает, следовательно, можно записать, что начиная с $p_{r}=7\#$, с учетом неравенств (7), (8):
$$\pi_{2}(p_{r}\#)-t>1 \eqno (9)$$
Неравенство (9) утверждает, что каким бы ни было количество пар простых-близнецов до $p_{s}$, в примориале $p_{r}\#$ всегда существует, как минимум $1$ пара простых-близнецов, превышающих $p_{s}$. (10)

Т.к. простые числа бесконечны, а соответственно, бесконечны примориалы, то с учетом вывода (10) доказано, что простые-близнецы бесконечны.


Батороев в сообщении #1699998 писал(а):
Перепишем (5) в несколько ином виде:
$$\varphi_{2}(p_{s}\#)=p_s\#\cdot \left[\left(1-\dfrac {1}{p_{1}}-\dfrac {\varphi_{2}(p_{1}\#)}{p_{2}\#}-\dfrac {\varphi_{2}(p_{2}\#)}{p_{3}\#}-...-\dfrac {\varphi_{2}(p_{r-1}\#)}{p_{r}\#}\right)-\left(...+\dfrac {\varphi_{2}(p_{s-1}\#)}{p_{s}\#}\right)\right]\egno (6)$$
Первая круглая скобка - это количество чисел, взаино простых с примориалом $p_{r}\#$, в примориале $p_{s}\#$. Вторая круглая скобка описывает количество чисел (от "действия" простых от $p_{r+1}$ до $p_{s}$), на которое уменьшится количество первой скобки в примориале $p_{s}\#$.
Число в первой скобке существенно больше, чем число во второй.
Поэтому то, о чем Вы пишете, просто не может случиться.

Я тогда за счет допущения II сделал вторую скобку максимальной возможной по величине, т.к. приведение к действительному распределению простых чисел, лишь уменьшает эту скобку, прореживая ее.

 
 
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение31.08.2025, 09:57 
Батороев в сообщении #1700267 писал(а):
Потому, что свое доказательство 07.04.21 я считаю корректным.
Вы можете считать что угодно, но математическое сообщество устроено по другому: должны считать другие люди, профессиональные математики (а не любой двоечник из средней школы и даже не программист как я), только тогда это будет считаться доказательством. За 4 года такого очевидно не произошло. Так что это не доказательство. Что бы Вы там себе ни считали.

 
 
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение31.08.2025, 10:50 
Dmitriy40 в сообщении #1700273 писал(а):
Вы можете считать что угодно, но математическое сообщество устроено по другому: должны считать другие люди, профессиональные математики

Я это уже давно понял. Поэтому и пишу, что "мне оно без надобности".

 
 
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение31.08.2025, 11:38 
Кстати вот эта тема topic46245.html Вам ничего не напоминает?

 
 
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение31.08.2025, 11:55 
vicvolf
Я чужие темы практически не читаю (зрениие ограничено). Если Ваши выкладки верны, то и Вам ничего "не светит", потому что никто не позволит "ломать стены неприступных крепостей". :)

 
 
 [ Сообщений: 395 ]  На страницу Пред.  1 ... 23, 24, 25, 26, 27


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group