А давайте попробуем, все-таки.
Итак, доказательство того, что равенство
невозможно для натуральных
Для ясности, потребуем такую сортировку:
(Оффтоп)
Пример в этом выражении за меньшее слагаемое - первое, а за большее - последнее, для единообразия рассуждений.
Теперь надо сделать разложение каждого слагаемого на сумму квадратов.
Таким образом, когда разложим выражение, то перед нами окажутся:
-- первое слагаемое в виде суммы одних, одинаковых квадратов;
-- и второе слагаемое, в виде суммы больших, одинаковых квадратов;
-- и третье слагаемое, в виде суммы ещё больших, одинаковых квадратов
-- и самих квадратов в нём – будет тоже больше, поскольку больше основание.
{Применительно к степени три, количество квадратов, всегда равно числу основания}
Количество квадратов, для переменных с одинаковым показателем, но разными основаниями – тем больше, чем больше основание степени.
Исходя из этого соотношения, ясно, что у результата в правой части выражения, если бы вдруг равенство было истинным –
могло быть только самое большое количество квадратов, поскольку основание там наибольшее.
Получив в левой части сумму двух сумм разных квадратов, у нас есть варианты подсчёта:
первый – сразу начать попарно складывать квадраты из разных слагаемых.
и второй – сложить вместе по два одинаковых квадрата отдельно в каждом слагаемом, и только затем – сложить получившиеся квадраты – из разных слагаемых;
Во втором варианте, для каждой суммируемой пары, согласно формулам квадрата суммы, – необходимы дополнительные два таких же квадрата.
В итоге, общее количество новеньких, больших квадратов в первом слагаемом, полученных в ходе суммирования – станет ровно в четыре раза меньше, чем было.
Во втором и треьем слагаемомых такая же история.
Дальнейшее сложение квадратов между собой в любом порядке – утратило всякий смысл.
Поскольку в результате – после знака равно, ожидалось самое большое количество, самых больших квадратов.
Количество квадратов в сумме, в левой части, при дальнейшем суммировании – не достигнет даже их числа, какое было изначально в наибольшем, третьем слагаемом. Ибо стало их, гораздо меньше.
Но количество квадратов в правой части, должно быть (при равенстве) – больше, чем в наибольшем слагаемом, чего не происходит.
Тода первый вариант:
-- каждый квадрат первого слагаемого, суммируется с одним из квадратов второго или третьего слагаемого, попарно.
<и это – только для Пифагоровых троек, иначе – всё ещё печальнее, по слишком малому количеству квадратов, см. выше>.
-- поскольку в первом слагаемом – количество квадратов – заведомо меньше чем во втором и третьем слагаемых, то новых, больших квадратов, получится ровно столько, как и было в первом, и ещё немного если второе и третье слагаемое тоже из пифаогоровй тройки
-- ну и незадействованных в сложении квадратов от второго и третьего слагаемых, останется сколько-то.
Здесь важно то, что общее количество всех квадратов в левой части после первого же суммирования, резко уменьшится, и станет ровно такое же, какое было во втором и третьем слагаемых, до всех операций сложения.
Разве что часть из них, стали большего размера, вследствие слияния квадратов из второго слагаемого или третьего, с уже исчезнувшими без следа квадратами первого или второго.
И уже на этом этапе, дальнейшее суммирование, теряет всякий смысл, поскольку результат, после знака равно, недвусмысленно обязывает наличие самых больших квадратов – в количестве заведомо большем, чем было в самом большом слагаемом.
Все основные варианты суммы квадратов в левой части исчерпаны, а любая перегруппировка квадратов, изменение их величин и количеств слева, за счёт друг друга – результат увеличить не в состоянии, этого не даст сделать переместительный закон.
В итоге, после любых мыслимых перегруппировок единиц между слагаемыми, с целью получить «удобные», в том числе Пифагоровы числа, мы будем вынуждены строго придерживаться условия, приведя всё к стандарту:
-- слагаемых в левой части только три;
-- основания в выражении все разные, а показатели одинаковые.
После чего, вновь приходим к разложению на квадраты, суммированию, и – в самом идеальном варианте, получим число всех квадратов в левой части, равное числу квадратов наибольшего слагаемого, тогда как число квадратов в правой части – заведомо всегда больше. Именно поэтому, равенство в выражении, невозможно как для степени три, так и для любой другой степени.
Поскольку имеется контрпример,
, то пожалуйста, обоснуйте, с цифрами – какие мои рассужения выше неверные, и в чём конкретно заключаются ошибки. Спасибо.
Контрпример, в виде суммы трёх кубов, не является таковым, поскольку в ВТФ – сумма двух степеней.
Оффтоп, где Вы зачем-то переложили алгоритм для суммы двух степеней, на сумму трёх кубов – некорректен. Одна из многих причин этого, неустранимая разница в дополнительной добавленной величине, в виде третьего слагаемого.
К тому же, до настоящего времени, пока не существует единого, полного алгоритма для целых чисел, применительно к задаче четырёх кубов, и в этой связи, применять к ней алгоритм, специально предназначенный для другого выражения, весьма самонадеянно.