fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19  След.
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение09.07.2018, 14:19 


21/02/16
483
vpb в сообщении #1324850 писал(а):
Вот список номеров из параграфа 5 Демидовича, которые я вам рекомендую прорешать.
Большое спасибо!
nya в сообщении #1324918 писал(а):
Я не следил за темой, вы уже немного знаете анализ многих перменных? Если нет, то можете не решать наверное.
Нет, пока не знаю. Думаю, отложу эту задачу на потом.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение16.07.2018, 22:24 


15/11/16
2
Москва
Здравствуйте irod, довольно интересно было читать данную тему на форуме, пока читал - появилось много мыслей, которыми и хочу поделиться, т.к. их много - спрячу под споилер:

(Оффтоп)


Хочется помочь человеку, но такое ощущение, что ему все советуют - и тянут его в разные стороны, а сам он не определился, чего хочет, как учиться, как достичь цели. Поэтому всех, а особенно Munin'a призываю к обсужденю того, что написал выше (мне же интересно вырабатывать навыки анилиза подобных ситуаций т.к. потом собираюсь преподавать).

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение19.07.2018, 08:43 


21/02/16
483
mmm99rus
Очень интересный пост и отличные вопросы, спасибо! Я сейчас в разъездах, нет времени сесть и вдумчиво Вам ответить, постараюсь позже все написать.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение20.07.2018, 01:52 


17/04/18
143
В ШАДе программирование тоже сильное, адванцед С++ по крайней мере у них вменяемый. А рассуждать о том как правильно нужно учить математику, когда сам её не знаешь - это как-то немного нечестно, мне кажется.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 14:58 
Заслуженный участник


18/01/15
3331
irod
Пока суть да дело, я подготовил наконец контрольную по Зельдовичу, можете решать как из разъездов вернетесь.
В некоторых задачах надо не только применить то, что в книжке, но и слегка творчески развить.

1) Пусть $V$ --- объем куба, $S$ --- площадь его поверхности. Выразить $V$ как функцию от $S$, а $S$ --- как функцию от $V$. Выразить зависимость между $S$ и $V$ полиномиальным уравнением: $F(S,V)=0$, где $F$ --- некоторый многочлен от двух переменных.

2) Найти производные следующих функций :
(а) $y=\frac{2x}{x^2+3}$
(б) $y=(x+1)\sqrt{ax^2+bx+c}$
(в) $y=\sqrt{x^2+\sqrt[3]{x}}$
(г) $y=\cos(x^2)$
(д) $y=(\ln x)^{\ln\ln x}$
(е) $y=\arctg(e^{\sqrt x})$


3) Найти следующие интегралы (вручную, а не с помощью таблиц), неопределенные и определенный.

(а) $\int\frac{dx}{x^2+2x-3}$
(б) $\int\frac{dx}{x^2+2x+10}$
(в) $\int x^2\ln x\,dx$
(г) $\int_0^{2\pi} \sin^4x\,dx$

4) Найти наименьшее значение функции $f(x)=x\ln x$ при $x\in(0,+\infty)$.

5) Найти площадь сегмента параболы $y=x^2-2x$, который от нее отсекает прямая $y=2x$.

6) (а) Доказать, что если $y(x)$ --- многочлен степени $\leq2$, $\overline y$ --- его среднее значение на отрезке $[a,b]$, то
$$ \overline y= \frac16 (y(a)+y(b)+4y(\frac{a+b}2) ).$$

(б) Найти числа $A$, $B$, $C$, $D$ такие, что для любого многочлена степени $\leq3$
$$ \overline y=Ay(a)+By(\frac23a+\frac13b)+Cy(\frac13a+\frac23b)+Dy(b). $$

-- 22.07.2018, 14:02 --

7) Найти ряд Маклорена функции $y=\tg(\frac\pi4+x)$ до членов порядка $x^2$ включительно.

8) Доказать, что ряд Маклорена функции $y=\sin x$ всюду сходится, а функции $y=1/(x-1)$ --- расходится при $|x|>1$.

9) Найти первые 4 ненулевых члена разложения в ряд Маклорена для функции $f(x)=1/(2\sqrt{2+x^2})$.

10) С точностью до членов порядка $x^2$ включительно $f(x)=2x+x^2+\ldots$ и $g(x)=2+3x+5x^2+\ldots$, в окрестности нуля. Найти разложения (до $x^2$ включительно) для $h_1(x)=f(x)+g(x)$, $h_2(x)=f(x)g(x)$ и $h_3(x)=f(x)/g(x)$.

11) Найти, в меру понимания, несколько начальных членов разложения по степеням $x$ в окрестности нуля для $f(x)=(\sin \sqrt x)^2$.


12) Доказать формулу
$$ y(x)=y(a)+(x-a)y'(a)+\int_a^x(x-t)y''(t)dt $$
(в предположении, что $y$ --- непрерывная функция, от которой можно брать 1-ю и 2-ю производные). Доказательство
есть в Зельдовиче, формула 17.9, однако предлагается доказать ее самостоятельно (или вспомнить доказательство, не
заглядывая в книжку).

-- 22.07.2018, 14:04 --

13) Составить уравнение эллипса с фокусами $F_1(1,2)$ и $F_2(5,5)$, проходящего через точку $A(5,2)$ (Замечание. В этом уравнении будут присутствовать все одночлены степени $\leq2$, а не только с $x^2$, $y^2$, $1$.

14) Составить уравнение эллипса с фокусами $F_1(4,0)$, $F_2(-4,0)$, проходящего через $A(4,6)$. Найти уравнение касательной к эллипсу в этой точке.


15) На гиперболе $y=1/x$ найти точку, в которой кривизна максимальна.

16) Доказать, что $(\arctg x)'=\frac1{1+x^2}$ (с разумной аккуратностью и не глядя в книгу).

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 16:15 
Заслуженный участник


18/01/15
3331
mmm99rus
Я тоже с интересом прочитал Ваше сообщение. Подробно обсуждать его сейчас нет возможности, отмечу только, что
(1) да, верно, что надо в значительной степени ориентироваться на курс мехмата МГУ, однако
(2) "овладеть математикой на уровне сильных студентов мехмата" --- это одна задача, а "поступить в ШАД и там учиться" --- другая. Ибо, в частности, в науке о данных не требуется вся математика, которую изучают на первых двух-трех курсах мехмата, и в частности Зорич от корки до корки не нужен. (Я в науке о данных не специалист, но кое-что из смежных областей знаю).

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 16:25 
Заслуженный участник


05/08/14
1615
vpb в сообщении #1328204 писал(а):
в науке о данных не требуется вся математика, которую изучают на первых двух-трех курсах мехмата, и в частности Зорич от корки до корки не нужен.

Зорич от корки до корки нужен в любой науке (в науке о данных особенно), которую не надо заключать в кавычки (может быть за исключением параграфа о преобразованиях Лоренца и текста об оптимизации токарного станка).

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 16:57 
Заслуженный участник
Аватара пользователя


30/01/06
72407
dsge в сообщении #1328206 писал(а):
Зорич от корки до корки нужен в любой науке

Это немножко перекошенный взгляд на вещи.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 17:29 
Аватара пользователя


14/12/17
1545
деревня Инет-Кельмында
dsge в сообщении #1328206 писал(а):
может быть за исключением параграфа о преобразованиях Лоренца и текста об оптимизации токарного станка

оба фрагмента находятся где-то в начале первого тома, наверное, это просто совпадение..

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 17:42 
Заслуженный участник


16/02/13
4214
Владивосток
mmm99rus в сообщении #1327161 писал(а):
все советуют - и тянут его в разные стороны
Тем, собственно, и отличается форум от ВУЗа, не?

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 18:56 
Заслуженный участник


05/08/14
1615
Munin в сообщении #1328208 писал(а):
dsge в сообщении #1328206 писал(а):
Зорич от корки до корки нужен в любой науке

Это немножко перекошенный взгляд на вещи.

Любой взгляд субъективен, но в данном случае речь идет о стандартном современном учебнике мат.анализа и науках, где применяется математика, в частности то, что дается на ШАД Яндексе. Непонятно какой еще взгляд может быть по этому вопросу.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 19:12 
Заслуженный участник


18/01/15
3331
dsge
1) Гм. Мои знания, конечно, ограничены. А можно узнать ссылку на какой-нибудь текст по науке о данных, где применяется, скажем, векторный анализ и теория поля, говоря по старому (или, по новому, дифференциальные формы и их интегрирование ) ?
2) Извиняюсь, а где это в Зориче фрагмент про токарный станок ? (Должен сказать, что я Зорича в жизни читал мало, заглядывал иногда еще в студентах).

-- 22.07.2018, 18:24 --

Не во всякой же науке, где применяется математика, стандартный современный курс матанализа для математиков широкого профиля применяется в полном объеме, имхо. Кроме того, Зорич просто слишком уж обширен...

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 19:37 
Заслуженный участник
Аватара пользователя


30/01/06
72407
dsge в сообщении #1328226 писал(а):
но в данном случае речь идет о стандартном современном учебнике мат.анализа

О стандартном для математических специальностей вузов. Давайте не забывать этот факт.

dsge в сообщении #1328226 писал(а):
...и науках, где применяется математика

Это не математические специальности вузов, а например, физические.

dsge в сообщении #1328226 писал(а):
Непонятно какой еще взгляд может быть по этому вопросу.

Вот это и грустно.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 20:09 
Заслуженный участник


05/08/14
1615
vpb в сообщении #1328228 писал(а):
А можно узнать ссылку на какой-нибудь текст по науке о данных, где применяется, скажем, векторный анализ и теория поля, говоря по старому (или, по новому, дифференциальные формы и их интегрирование ) ?

Есть там всякие случайные поля на многообразиях, см., например:
https://en.wikipedia.org/wiki/Manifold_regularization
или немного другое
https://arxiv.org/pdf/1701.02434.pdf
vpb в сообщении #1328228 писал(а):
Извиняюсь, а где это в Зориче фрагмент про токарный станок ?

Не помню, eugensk утверждает, что в начале 1-го тома. Там Зорич ссылается на хоздоговор, выполненый совместно с Майковым.

-- 22.07.2018, 21:06 --

Munin в сообщении #1328233 писал(а):
О стандартном для математических специальностей вузов. Давайте не забывать этот факт.

Munin в сообщении #1328233 писал(а):
Это не математические специальности вузов, а например, физические.

ИМХО. Ну, лучшего учебника мат.анализа для физиков трудно придумать. В какой еще книге по матанализу можно встретить уравнения Ньютона, Максвелла, Шредингера, теплопроводности, Гамильтона, Гамильтона-Якоби, преобразования Лоренца, цикл Карно вместе.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 22:12 
Заслуженный участник
Аватара пользователя


30/01/06
72407
dsge в сообщении #1328241 писал(а):
Ну, лучшего учебника мат.анализа для физиков трудно придумать. В какой еще книге по матанализу можно встретить уравнения Ньютона, Максвелла, Шредингера, теплопроводности, Гамильтона, Гамильтона-Якоби, преобразования Лоренца, цикл Карно вместе.

Это не достоинство учебника мат. анализа для физиков. Физики все эти уравнения встретят в учебниках физики. А вот достоинством была бы доходчивость и акцент на вычислениях, а не на абстракциях и обобщениях. Я слышал, что такими свойствами обладают другие учебники.

Ну и всё это офтопик, который стоило бы обсуждать в других темах. Мне достаточно, что вы признали, что выражали своё имхо.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 282 ]  На страницу Пред.  1 ... 14, 15, 16, 17, 18, 19  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group