, довольно интересно было читать данную тему на форуме, пока читал - появилось много мыслей, которыми и хочу поделиться, т.к. их много - спрячу под споилер:
Вы выбрали довольно сложный путь, решив стать математиком для того, чтобы потом стать программистом. Почему вы так сконцентрировались на ШАД? Он же предназначен для "доучивания" математиков, которые затем будут заниматься программированием (а точнее - data science). При этом выше вы писали, что рассматриваете вариант после ШАДа заниматься "теоретической математикой" (видимо, имелась в виду не прикладная математика) - тогда вам нужно полноценное математическое образование, или, например НМУ (про него - позже). Если же вы хотите заниматься программированием - тогда есть более простые пути. ШАД хорош для ребят с Мехмата (возможно еще Физфака и ВМК) МГУ - людей, у которых уже есть хорошее математическое образование и которые хотят его к чему-то приложить. Конечно, все реально, но вы ставите себе очень сложные задачи, не понятно зачем. Но, если вы сами сможете изучить значительную часть математики - это очень круто и потом к чему-нибудь обязательно приложится.
Дальше стоит написать о текущем положении дел и о том, как это исправить. В школе и в вузе математику преподают по-разному, в школе дается, в основном, набор фактов, не все из которых доказываются, важно само знание этих фактов (основных теорем свойств и т.п.), также важны навыки решения задач. В школе математика преподается местами не последовательно, параллельно даются факты и знания из разных областей (на уроке алгебры проходят основы теории вероятностей и т.п.). В вузе все несколько иначе: вся математика разбита на несколько частей, те, между которыми есть логическая связь, читаются последовательно (взять тот же курс анализа - он разбит на несколько последовательных частей). При изучении важно не столько запоминание отдельных фактов и материала, сколько осознание (в том числе и структуры - связи теорем и утверждений) и использование для более сложных вещей (поэтому присутствует множество лемм и утверждений - их зубрить не надо, их нужно понять и, при необходимость, уметь доказать). При всем выше сказанным, по-прежнему, важно умение решать задачи, поэтому кое-что все-таки нужно запоминать.
К чему я это пишу - вы прочитали довольно много сложных вещей, но плывете в базе. Например, выше, вы писали про ряд (или, в том контексте, про формулу - не помню) Тейлора, но при этом, в ответе Munin'у, на его очень грамотно поставленные вопросы, продемонстрировали, что не знаете, что такое асимптота и ограниченность/неограниченность функции (вы дали верный ответ на вопрос, но неверное обоснование). В используете все тот же "школьный" подход к математике - учите методы решения конкретных задач, некоторые отдельные факты. Хватаетесь за что-то сложное, не подчистив основы, изучать нужно последовательно, а не рывками и набегами. Как итог - наверное, не видите логической связи между многими теоремами и теориями, появляются пробелы в элементарных вещах. Пытаетесь читать что-то сложное, в итоге, что-то оттуда запоминаете (делать это не нужно, пока не дойдете), начинаете плыть в теме из-за отсутствия каких-то знаний из прошлых тем, и возвращаетесь назад. Из-за этого вы постоянно держите в голове большое число тем, информации, но на самом деле можете выкинуть большую часть - она пока вам не нужна, только неэффективно расходуете время.
Как это исправить:
Выработать четкую последовательность в изучении, так, как это делают в вузах. Спуститься на самые основы и о порядку доказать все теоремы и понять их, попутно, решая задачи. И не лезть читать про Тейлора, не доказав теорему Лагранжа (соответственно, не лезть к ней, не доказав т. Ролля, и так далее...). Только тогда будет понимание того, что вы знаете, не знаете и того, что нужно знать. Сначала нужно освоить основы анализа (все, что с функцией одной перемененной), параллельно изучить ангем (не думаю, что это будет сложно), после ангема очень подробно освоить линал (особенно то, что до квадратичных форм - они пригодятся в матане (локальный экстремум функции в
)), перед всем этим неплохо бы ознакомиться с основами алгебры, читаемыми в 1 семестре на мехмате, а дальше - если дойдете, сами поймете, куда и как - это ТФКП и функан, и прочие прелести - вариативно. Все вышеперечисленные разделы стоит изучать очень подробно, ничего не пропуская, не лезть вперед, по порядку доказывать теорему за теорему, попутно решая задачи. Самое главное- не торопиться и не бежать голопом, но работать активно. В конце каждого раздела оглядываться на билеты к экзаменам тех же ММ/ФФ, нужно уметь решать почти все.
По поводу литературы и прочих источников, вам тут много насоветовали.
Прежде всего из теории - учебник Зорича: да, вы писали, что для вас он сложен - но весь мехмат сейчас учится по Зоричу, для них это база, а в ШАД пойдут очень сильные ребята с ММ, для них учебник Зорича - это что-то очень простое (но объемное), многие из них читали гораздо более сложные вещи (например Лекции по мат. анализу. С.М.Львовского от НМУ - там вообще к матану подходят, слегка, со стороны топологии...), поэтому чтобы быть на их уровне - материал из Зорича надо понимать идеально.
Вам также советовали Фихтенгольца- хорошая книга, но она скорее для физика (и не для теоретика), он немного устарел и там все подается с некоторыми упрощениями, не даются некоторые фундаментальные понятия (из простого - предел по базе, например), которые ребята с мехмата, идущие в ШАД знают.
Про Демидовича вам уже все сказали, Демидович - это основа, задачи из него нужно уметь решать (правда, на ММ от него, вроде, отходят).
Из Аналитической геометрии - есть хорошая и тонкая книжка лекций Веселова и Троицкого (Троицкий эти лекции читает на ММ).
Задачников по ангему много, классики нет, меня, например, по А.В. Клетейнику учили.
С линалом сложнее - его, хорошо бы, учить по Винбергу, но это, наверное, сложно, можно и по 2 тому Кострикина, хотя например мне он не нравится.
Есть книга Линейная Алгебра в Вопросах и Задачах (ЛАВЗ) Шишкина, по ней легко понять, что нужно знать и уметь решать, перед каждым блоком задач там краткий теор. ликбез. Есть похожая книга по матану - Мат. анализ. в вопросах и задачах - советовать ее особо не буду, но неплохая.
Лучше всего смотреть видео-лекции с того же НМУ/Мехмата/Физтеха. (Матан на ФФ несколько специфичен, не плохой, но другой - не стоит). Видео-лекции, в вашем случае, это очень удобно - расставят акценты и пояснят моменты, которые ни в одной книге не поясняются.
Рассматриваете ли вы альтернативные варианты? Опять же, почему именно ШАД? Если вы хотите математику - то лучше в НМУ, но это сложно (зато и диплом будет, бесплатно). Если хотите прогать - то тут эффективнее либо полноценная вышка, либо самообразование и практика. Если вы сильно упретесь - то в ШАД вы попадете, но готовы ли вы по 5-6 часов ежедневно заниматься чисто математикой? И да, как у же выше писали, на 19 год особо не надейтесь.
Хочется помочь человеку, но такое ощущение, что ему все советуют - и тянут его в разные стороны, а сам он не определился, чего хочет, как учиться, как достичь цели. Поэтому всех, а особенно
'a призываю к обсужденю того, что написал выше (мне же интересно вырабатывать навыки анилиза подобных ситуаций т.к. потом собираюсь преподавать).