в сто положено записывать координаты и другие неинвариантные характеристики всех объектов относительно одной и той же исо, а не относительно друг друга. вы же по сто пытаетесь решить, а не по какой то другой теории?
вот по сто, если относительно исо в момент

из точки с координатами

было в разные стороны запущено два фотона, то их координаты равны

, а координаты другого

. вот и вычитайте их для нахождения расстояния. и берите производную для нахождения скорости его изменения. как положено в сто, а не как вам кажется правильнее. получится однозначное

.
относительно других исо результат будет не обязательно таким же, потому-что относительно них и начальные условия будут записаны по другому. "расстояние" не относится к инвариантным величинам поэтому относительно разных исо окажется разным