Я описал рамки теории множеств, в которой допускаются и праэлементы (ур-элементы) и переменные, которые не являются множествами.
Более того в рамки этой теории укладываются и

и

и

.
Я рассматриваю возможность исключения из

аксиомы о том, что любой немаксимальный класс является множеством, по той причине, что она несовместима с

.
В этой теории есть странности, например, то что класс всех синглетонов не эквивалентен классу всех элементов.
Но эта теория непротиворечива, поэтому имеет право на существование.
Можно принять аксиому, эквивалентную аксиоме-схеме замещения: класс множеств меньшей кардинальности, чем некоторое множество является множеством.
Заметим, что эта аксиома не является схемой, поэтому она проще, чем аксиома-схема замещения.
Если мы хотим формулировать аксиомы с множествами, мы можем определить множество, как класс, который является элементом.
Это проще, но это менее интуитивно, чем определение множества из пошагового построения.
-- Ср ноя 19, 2014 17:03:15 --У меня, вообще говоря, такое впечатление, что Вы непонятно зачем пытаетесь выдумать собственную теорию множеств.
А для чего была "выдумана" теория Морза-Келли? Я думаю, она популярна, поскольку на ней основан замечательный учебник Келли "Общая топология".