Заблокирован |
|
22/03/08 ∞ 7154 Саратов
|
Последний раз редактировалось Nataly-Mak 27.03.2013, 12:57, всего редактировалось 1 раз.
Безо всякой мистики --- вот в этом антимагическом квадрате Стенли 17-го порядка из различных простых чисел (Оффтоп)
Код: 9372688136871853,22455449468541883,35538210800211913,48620972131881943,61703733463551973,74786494795222003,87869256126892033,100952017458562063,114034778790232093,127117540121902123,140200301453572153,153283062785242183,166365824116912213,179448585448582243,192531346780252273,205614108111922303,218696869443592333 11735227242889999,24817988574560029,37900749906230059,50983511237900089,64066272569570119,77149033901240149,90231795232910179,103314556564580209,116397317896250239,129480079227920269,142562840559590299,155645601891260329,168728363222930359,181811124554600389,194893885886270419,207976647217940449,221059408549610479 76240762416222539,89323523747892569,102406285079562599,115489046411232629,128571807742902659,141654569074572689,154737330406242719,167820091737912749,180902853069582779,193985614401252809,207068375732922839,220151137064592869,233233898396262899,246316659727932929,259399421059602959,272482182391272989,285564943722943019 93490858594661729,106573619926331759,119656381258001789,132739142589671819,145821903921341849,158904665253011879,171987426584681909,185070187916351939,198152949248021969,211235710579691999,224318471911362029,237401233243032059,250483994574702089,263566755906372119,276649517238042149,289732278569712179,302815039901382209 114146343711853721,127229105043523751,140311866375193781,153394627706863811,166477389038533841,179560150370203871,192642911701873901,205725673033543931,218808434365213961,231891195696883991,244973957028554021,258056718360224051,271139479691894081,284222241023564111,297305002355234141,310387763686904171,323470525018574201 135651360264848653,148734121596518683,161816882928188713,174899644259858743,187982405591528773,201065166923198803,214147928254868833,227230689586538863,240313450918208893,253396212249878923,266478973581548953,279561734913218983,292644496244889013,305727257576559043,318810018908229073,331892780239899103,344975541571569133 195625258610971297,208708019942641327,221790781274311357,234873542605981387,247956303937651417,261039065269321447,274121826600991477,287204587932661507,300287349264331537,313370110596001567,326452871927671597,339535633259341627,352618394591011657,365701155922681687,378783917254351717,391866678586021747,404949439917691777 202860934798777373,215943696130447403,229026457462117433,242109218793787463,255191980125457493,268274741457127523,281357502788797553,294440264120467583,307523025452137613,320605786783807643,333688548115477673,346771309447147703,359854070778817733,372936832110487763,386019593442157793,399102354773827823,412185116105497853 223789213311833843,236871974643503873,249954735975173903,263037497306843933,276120258638513963,289203019970183993,302285781301854023,315368542633524053,328451303965194083,341534065296864113,354616826628534143,367699587960204173,380782349291874203,393865110623544233,406947871955214263,420030633286884293433113394618554323 224957853888083671,238040615219753701,251123376551423731,264206137883093761,277288899214763791,290371660546433821,303454421878103851,316537183209773881,329619944541443911,342702705873113941,355785467204783971,368868228536454001,381950989868124031,395033751199794061,408116512531464091,421199273863134121,434282035194804151 251672116721153519,264754878052823549,277837639384493579,290920400716163609,304003162047833639,317085923379503669,330168684711173699,343251446042843729,356334207374513759,369416968706183789,382499730037853819,395582491369523849,408665252701193879,421748014032863909,434830775364533939,447913536696203969,460996298027873999 325435306756257757,338518068087927787,351600829419597817,364683590751267847,377766352082937877,390849113414607907,403931874746277937,417014636077947967,430097397409617997,443180158741288027,456262920072958057,469345681404628087,482428442736298117,495511204067968147,508593965399638177,521676726731308207,534759488062978237 333012166298058323,346094927629728353,359177688961398383,372260450293068413,385343211624738443,398425972956408473,411508734288078503,424591495619748533,437674256951418563,450757018283088593,463839779614758623,476922540946428653,490005302278098683,503088063609768713,516170824941438743,529253586273108773,542336347604778803 338275337330536643,351358098662206673,364440859993876703,377523621325546733,390606382657216763,403689143988886793,416771905320556823,429854666652226853,442937427983896883,456020189315566913,469102950647236943,482185711978906973,495268473310577003,508351234642247033,521433995973917063,534516757305587093,547599518637257123 381336957506808803,394419718838478833,407502480170148863,420585241501818893,433668002833488923,446750764165158953,459833525496828983,472916286828499013,485999048160169043,499081809491839073,512164570823509103,525247332155179133,538330093486849163,551412854818519193,564495616150189223,577578377481859253,590661138813529283 485191591159166291,498274352490836321,511357113822506351,524439875154176381,537522636485846411,550605397817516441,563688159149186471,576770920480856501,589853681812526531,602936443144196561,616019204475866591,629101965807536621,642184727139206651,655267488470876681,668350249802546711,681433011134216741,694515772465886771 493052729074838717,506135490406508747,519218251738178777,532301013069848807,545383774401518837,558466535733188867,571549297064858897,584632058396528927,597714819728198957,610797581059868987,623880342391539017,636963103723209047,650045865054879077,663128626386549107,676211387718219137,689294149049889167,702376910381559197 17! (семнадцать факториал) одинаковых сумм из 17 чисел! Квадрат построен на основе арифметических прогрессий Я. Вроблевского из простых чисел, которые он прислал мне сразу же, как была опубликована моя головоломка о квадратах Стенли из простых чисел: http://www.primepuzzles.net/puzzles/puzz_681.htmАрифметические прогрессии Я. Вроблевского вы найдёте тут. Обалдеть! Вот это мистика Я посчитала индекс приведённого квадрата Стенли, у меня получилось 5675102246930958811. Просьба: проверить, правильно ли я посчитала индекс. С такими огромными числами и обращаться не умею Индекс равен сумме всех чисел, расположенных на главной диагонали квадрата (любой). Из этих прогрессий можно построить квадрат Стенли максимального порядка 20 (есть 20 прогрессий длины 20 с одинаковой разностью).
|
|