Alex-Yu в сообщении #680031 писал(а):
Из того, что такие "номера" проходят на уровне функций Грина и теории возмущений, вовсе даже не следует, что то же самое можно устроить и с операторами и векторами состояния.
Это почему? Я строю теорию, в которой операторы и векторы состояния определены в виковском случае.
Вот когда построете, только по порядку с самого начала, без всяких там затей в духе Хелзена-Мартина, когда почти все "падает с потолка", расскажите, ладно? Интересно, в частности, откуда Вы будете брать канонические коммутационные соотношения не имея канонических импульсов... Или Вы будете скобку Пуассона на коммутатор заменять по Дираку? А где Вы возмете скобку Пуассона? И что Вы будете делать без унитарности... Неунитарная квантовая теория -- это сильно
В общем тут Вы погорячились несколько. Это общеизвестное место: каноническое квантование полностью явно ковариантно не сделать (см. Вайнберга в т.ч.). Швингер пытался, но ничего толком у него не вышло. Да еще и "с потолка" при этом кое-что писать пришлось. Есть у Боголюбова-Ширкова, прямо с сылками на Швингера. Как они не старались избежать введения 3-фурье-разложения, все сделать ковариантно, а все равно пришлось перейти в итоге к нековариантной (явно) форме. Ну несколько начальных абстрактных формул написали ковариантных, да только толку от них... Паталогия это: пытаться делать каноническое квантование ковариантно.
Про швингеровские источники можно почитать в любом более-менее современном учебнике по КТП. Рамон, Пескин-Шредер и т.д. Даже у Боголюбова-Ширкова есть, но не в начале. Но Боголюбова-Ширкова по этому вопросу я никак порекомендовать не могу.
-- Вт фев 05, 2013 05:50:22 --Не понимаю, почему не сами операторы.
Потому что вне массовой поверхности они не имеют смысла. А 4-интегрирование, ограниченное на массовую поверхность, это фактически 3-интегрирование. "Финтить", "заметая под ковер" этот тривиальный факт, в принципе можно пытаться, но это только "мозги пудрить". Не позавидую читателю таких финтов, особенно если он начинающий
-- Вт фев 05, 2013 05:57:33 --Alex-Yu в сообщении #680031 писал(а):
Будет кассическая (!!!) статистическая теория поля.
Ну и чем плохо?
В классической теории, пусть и статистической, нет никаких операторов. Векторов состояния тоже нет. Вот функции Грина есть (их роль играют корреляторы). Вот с ними можно играть в виковский поворот. С континуальным интегралом -- тоже можно. А с операторами и векторами состояния -- нельзя. Во всяком случае нельзя хоть в какой-то мере осмысленно.