верно?
Интеграла у Вас вообще не было (теперь появился, в середине выкладок его, правда, и теперь нету) и куда-то пропали дельта-функции. До снятия временного интегрирования дельта-функцией вообще занудно дифференцировать. Две дельта-функции -- штука сильно сингулярная, хотя, наверное, раскрывается. В итоге, кстати, ни одной. Куда девались? Было два интеграла (из
и из
), почему в итоге остался один? Вообще-то лучше бы писать у какого поля какой аргумент. Что такое
? В какой точке это
?
Что такое
вообще не понятно. В каком смысле "в импульсном представлении? Кстати,
. Но только при наличии дельта-функции. Как говорят "на уравнениях движения" (или "на массовой оболочке"). В квантовой физике встречаются величины и вне массовой оболочки (гайзенберговская неопределенность по существу). А здесь как? В общем "тщательнее надо" (С).
Кстати, можно производные вытащить из-под усреднения. В квантополевом смысле это вообще не операторы! Тогда получится просто даламбериан от функции Паули-Иордана (их несколько, разберитесь какой именно). Знак опередлите самостоятельно. И сравните прямое вычисление (через интегралы) и с выносом производных из-под усреднения. Покажите, что то же самое получается. Это будет проверка.
А-а-а-а... вроде ясно как обходиться с двумя дельта-функциями. Можно, можно не снимать временное интегрирование с самого начала (хотя для меня это совсем не привычно!). Коммутатор дает только ТРЕХМЕРНУЮ дельта-функцию, временных интегрирований остается по прежднему два (а пространственное -- одно, второе снимается коммутатором!). Поэтому получается две дельта-функции с разными аргументами. Это штука нормальная, тут проблемы типа квадрата дельта-функции не возникает. Одно интегрирование по времени снимает одну из дельта-функций, остается всего одна. Которая у Вас потеряна. Вот тогда что-то вроде вразумительное выходит. Если оба поля в одной точке, то интеграл расходится, что и должно быть. То же самое получается и с даламберианом от функции Паули-Иордана с предельным переходом: оба поля в одну точку. От этой точки ответ, кстати, не зависит. Что и должно быть в силу трансляционной инвариантности. В общем у Вас потеряна дельта-функция массовой поверхности и в экспоненте надо понимать х как разницу аргументов двух полей. При полях в одной точке экспонента исчезает, интеграл расходится. Все ОК. Квадрат 4-импульса действительно можно заменить на квадрат массы, получится очень просто. Надо только на бумажке акуратно определить коэффициенты и знаки (всеже дельта-функции от нелинейной функции аргументов, там якобиан появится).