Дробные доли
для гладких функций не обладают свойством равномерности локально. Для них имеет место только равномерность в среднем если они не имеют точек перегиба. Но этого достаточно для многих задач.
Значит Вы утверждается, что для всех гладких нелинейных функций, если они не имеют точек перегиба, имеется равномерность в среднем?
Да.
Почему задаю этот вопрос в разных вариантах, потому что:
1. После большого числа лемм
напрашивается все таки теорема о том, что гдадкая нелинейная функция в отсутствии точек перегиба равномерна в среднем. Следствиями из нее может быть случай слабой равномерности для линейной функции и нелинейной функциями с точками перегиба.
2. С моей точки зрения, в начале работы желательно провести классификацию видов равномерности функций:
Если существует гладкая в бесконечности функция
, что выполняется:
при любом
,
то f(x) при k>1/2 будет со слабой равномерностью,
при k=1/2 - со средней равномерностью,
при 0<k<1/2 - со слабой равномерность,
при k=0 - с абсолютной равномерностью.
Естественно, множество функций со слабой равномерностью включает в себя множество функций со средней равномерностью. Множество функций со средней равномерностью включает в себя множество функции с сильной равномеростью, а множество функции с сильной равномерностью включают в себя множество функций с абсолютной равномерностью.
Функции со слабой и средней равномерностью были указаны выше. Хотелось бы поговорить о множестве функций с сильной и абсолютной равномерностью. К функциям с абсолютной и соответственно с сильной равномерностью напрашивается отнести ступенчатую функцию, которая скачет на целое значение вверх и вниз при целых значениях х. Действительно площадь под этой функцией содержит только целые точки и других не содержит, поэтому ошибка не накапливается и равна 0. Конечно, в общем случае, данная функция не является гладкой и поэтому по определению равномерности не проходит. Но в частном случае функция y=b, где b - целое число и отрезок интегрирования целый, удолетворяет условию гладкости и так как ошибка в данном случае также равна 0, то подходит по определению к функциям с абсолютной, тем более сильной равномерностью, и тут возникает парадокс.
3. С точки зрения теории g-функций y=b, где b - целое число, является линейной функцией и поэтому должна быть отнесена к функциям со слабой сходимостью.