Насчет финслеровой геометрии... мне кажется, у участников дискуссии весьма смутное представление о том, что это такое. Высказывания, подобные
Первый идет от Картана и связан с двухиндексным финслеровым метрическим тензором, зависящим как от точки, так и от направления в касательном пространстве. Второй идет от Рашевского. Только второй подход и признает Гарасько. В нем финслеров метрический тензор, как и риманов, не зависит от направления, а лишь от точки, однако в общем случае имеет не два индекса, а больше, в зависимости от "арности" фундаментальной метрической формы.
не подлежат адекватной расшифровке (= я не могу понять, что они означают в точности)
Давайте по-простому будем: гладкое многообразие

называется
финслеровым, если каждое касательное пространство

снабжено (гладкой... но можно и предельные случаи рассматривать)
нормой 
, гладко зависящей от точки

. Гладкая зависимость от точки -- гладкость в каждой карте отображения

.
На счет поимания в точности - какие проблемы? В посте, откуда Вы вырезали фразу есть ссылка, посмотрите, может станет понятнее..
Предлагаемое Вами "простое" определение выбрасывает за рамки финслеровости, например, такие важные для физики многообразия, у которых следующие метрические функции:



.
Конечно, при желании их можно просто по другому называть, например, псевдофинслеровыми или пространствами с мультинормами. Это не принципиально. Принципиально то, что основываясь на классическом подходе (т.е. типа Вашего "простого" определения, но примененного к подобным пространствам) даже простейших геометрических свойств таких многообразий часто бывает не разглядеть. В частности, не разглядеть возможностей для введения обобщений углов, а тем более их обобщений на меры фигур из трех и более векторов (полиуглы). Вместе с этим за бортом оказываются непрерывные симметрии этих пространств, являющиеся финслеровыми обобщениями конформных преобразований евклидовых пространств. А какой же физик станет игнорировать непрерывные симметрии?
Короче, попробуйте предложить "простое" и одновременно работоспособное основание для работы с многообразиями, метрические формы которых выписаны выше, а как их называть, финслеровыми или нефинслеровыми, дело десятое..
Полагаю, если такое простое и работоспособное основание Вы сформулируете, то и моя фраза, на которую Вы ссылаетесь как на неадекватную, уже вряд ли покажется таковой..