Г.М. Фихтенгольц "Курс дифференциального и интегрального исчисления" - в 3-х томах М., 1969;
Хороший учебник, в нём довольно хорошо рассмотерны основы анализа, немного трудноват в том смысле, что многие выкладки имеют пропуски, приходится думать при прочтении и догадываться , это же и хорошая сторона учебника заставляет анализировать и думать самостоятельно.
Некоторое внимание уделено задачам по физике и математической физике. (Колебания струны, теплопроводность).
Коротко рассмотрены дифференциальные уравнения, в этом его недостаток.
Все основные вопосы анализа рассмотрены. Учебник по общему курсу анализа, специальные приложения математики в нём не рассматриваются.
Н.С. Пискунов "Дифференциальное и интегральное исчисление" -в 2-х томах М. 1976;
Учебник рекомендован для ВТУзов, очень хорошо дополняет предыдущий.
Кратко, доступно, понятно и просто излагаются основы анализа и интегрального исчисления, а также некоторых других приложений (элементы теории вероятности и математической статистики).
Во 2-ом томе больше внимание уделено видам, классификации, методам решений дифференциальных уравнений, систем линейных дифференциальных уравнений, теории устойчивости Ляпунова и некоторым численным методам систем дифференциальных уравнений.
Включены параграфы посвящённые комплексным числам рядам с комплесными членами, а также комплексной перменной.
Основные понятия теории степенных и тригонометрических рядов написаны в доступной простой форме, уделено внимание отображениям Фурье и многим другим специальным темам.
По этому учебнику просто учится и преподовать.
Рекомендую.
-- 19 фев 2011, 02:13 --Рекомендую внимание обратить на таблицы производных и интегралов приведённые в Пискунове и Фихтенгольце.
А также пользоваться, как пособием, Г.Б. Двайт "Таблицы интегралов"
Что касется пособий для решения, то тут я придерживаюсь мнения некоторых форумчан, о том, что многократное повторение решений частных случаев задач с цифрами в последствии затрудняет восприятие общих случаев тех же задач, поэтому рекомендую сопровождать темы несколькими примерами (не более четырёх с одним общим случаем).
Ещё очень хочу напомнить основное правило в матетматике:
"Задача считается решённой, если для неё определён метод, позволяющий свести её к ранее решённой задаче или определна последовательность методов, позволяющих получить требующийся результат."
(Цитата ученика, ученика профессора Колмогорова
).
Рекомендую этим принципом руководствоваться в обучении и преподовании, очень помогает.