Я тоже так делал. Вышло плохо: теоремы забывались и любые отклонения задач от стандартных приводили меня в ступор
Не нужны эти теоремы. Не читай их - не забудешь ничего.
А вот если не можешь решить задачу - ищи теорию.
Если найдешь, то одновременно и задачу решишь, и новую теорию усвоишь.
Знания полученные таким способом неполные и фрагментарные, человек не усвоил всего, но все время как-бы в процессе обучения.
Но зато без лишнего труда знает все, что ему нужно на данный момент времени.
Рецепт конечно не годится для тех, кто должен сдавать экзамен. Само собой разумеется, что математики должны знать доказательства, а студентам и учащимся оптимально слушать преподавателей и следовать предложенной программе.
-- Вс янв 09, 2011 17:26:12 --Вопрос такой: как подготовиться по математике к изучению квантовой механики?
Условия: человек когда-то прослушал курс анализа, знает кое-что про координаты, графики, интегралы и дифференцирование.
Требуется найти наискорейший способ подготовки с минимальными усилиями и наименьшим материалом для изучения.
-- Вс янв 09, 2011 17:55:25 --Я начал с линала, т.к. посчитал что для его освоения на базовом уровне не нужно никаких особых математических знаний.
Обратите, пожалуйста, внимание на следующую тему:
собственные вектора самосопряженного линейного оператора образуют ортогональный базис.