2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу 1, 2, 3, 4, 5 ... 8  След.
 
 Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 20:33 


27/08/06
579
Друзья, дайте пожалуйста рецензию на работу А.А.Зенкина
"Трансфинитный рай, Георга Кантора: Библейские сюжеты Апокалипсиса".
http://www.raai.org/about/persons/zenki ... ranrai.doc
Краткое содержание: автор( вроде доктор физ.мат наук) пытается убедить всех, что теорема Кантора - не верна.
Он там приводит ряд рассуждений, и вроде как показывает "что все ошиблись", причем в довольно хамовито-дерзкой на мой взгляд манере. Лично я нашел там несколько ошибок (на мой взгляд). Но хотелось бы чтобы непредвзятую оценку дали другие. Спасибо.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 20:40 


20/12/09
1527
Похоже на сражение с ветряными мельницами.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 20:45 


27/08/06
579
Ales в сообщении #408356 писал(а):
Похоже на сражение с ветряными мельницами.

У меня ощущение то же такое возникло... Но хотелось бы чтобы Вы написали что-то более содержательное. Выпишите первую его ошибку, если не трудно. Cпасибо.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 20:57 


20/12/09
1527
Dialectic в сообщении #408359 писал(а):
Но хотелось бы чтобы Вы написали что-то более содержательное. Выпишите первую его ошибку, если не трудно.

Здесь не о том речь, нет смысла говорить о каких-то ошибках.

Правда Кантор тоже был сумасшедшим.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 21:05 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Рецензии уже существуют.
http://www.philos.msu.ru/vestnik/philos/art/2003/sramko_theorem.htm

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 21:16 


27/08/06
579
shwedka в сообщении #408370 писал(а):
Рецензии уже существуют.
http://www.philos.msu.ru/vestnik/philos/art/2003/sramko_theorem.htm

shwedka спасибо! Отличная статья, все выводы автора совпали можно сказать - слово в слово с моими.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение02.02.2011, 22:14 
Заслуженный участник


10/08/09
599
ИМХО, если в статье на полном серьёзе употребляются слова "актуальная бесконечность", статью можно закапывать сразу.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 01:23 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Я пишу роман под названием «Моя жизнь без А.А.Зенкина». Теперь два серьёзных вопроса:
migmit в сообщении #408412 писал(а):
ИМХО, если в статье на полном серьёзе употребляются слова "актуальная бесконечность", статью можно закапывать сразу.

А в чём провинилась актуальная бесконечность? Встречал я этот термин, по моему, у Френкеля. Идея такая (если не вру): Рассматриваем бесконечное множество - актуальная бесконечность . Рассматриваем последовательность, имеющую конечный предел: для каждой окрестности этого предела есть конечное число элементов вне этой окрестности (трем себе нос: где тут нечто бесконечное) - это потенциальная бесконечность. К сожалению, не помню где читал. Кто-нибудь знает где об этом написано?

Второй вопрос. Я.В. Шрамко, написавший рецензию на заметку Зенкина, упоминает статью А. Френкеля «О диагональном методе Кантора» 1935 г. в 25-м томе журнала «Fundamenta Mathematicae» (с. 45—50). Я сознаю, что эта статья, конечно, вошла в его легко доступные книги. Но, может быть, кто-нибудь знает как добраться и до самой статьи?

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 01:36 
Заслуженный участник
Аватара пользователя


06/10/08
6422
Виктор Викторов в сообщении #408458 писал(а):
Второй вопрос. Я.В. Шрамко, написавший рецензию на заметку Зенкина, упоминает статью А. Френкеля «О диагональном методе Кантора» 1935 г. в 25-м томе журнала «Fundamenta Mathematicae» (с. 45—50). Я сознаю, что эта статья, конечно, вошла в его легко доступные книги. Но, может быть, кто-нибудь знает как добраться и до самой статьи?
http://matwbn.icm.edu.pl/ksiazki/fm/fm25/fm2517.pdf
Перевод http://www.philos.msu.ru/vestnik/philos ... diagon.htm

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 01:41 
Заслуженный участник


10/08/09
599
Виктор Викторов в сообщении #408458 писал(а):
Встречал я этот термин, по моему, у Френкеля.

Я имел в виду - в современной статье, конечно.
Виктор Викторов в сообщении #408458 писал(а):
это потенциальная бесконечность.

Да что вы?
Последовательность - есть отображение из множества $\mathbb{N}$. И только. Где тут "потенциальность"?

Просто для математиков вопросы "потенциальной" и "актуальной" бесконечностей - давно пройденный этап.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 02:04 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Xaositect!
Спасибо. Прочитал и скачал. Очень симпатично.

(Оффтоп)

Я думал, что оригинал по английски. Ещё раз спасибо, что указали на перевод. С немецким мне туго.

migmit в сообщении #408464 писал(а):
Виктор Викторов в сообщении #408458 писал(а):
это потенциальная бесконечность.

Да что вы?
Последовательность - есть отображение из множества $\mathbb{N}$. И только. Где тут "потенциальность"?

Речь идет о том, что вне окрестности остается всегда конечное множество точек, и термин «потенциальная бесконечность» как бы спрашивает: а где бесконечность?

migmit в сообщении #408464 писал(а):
Просто для математиков вопросы "потенциальной" и "актуальной" бесконечностей - давно пройденный этап.

Ссылочку бы мне...

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 10:39 
Заслуженный участник
Аватара пользователя


28/09/06
10982
migmit в сообщении #408412 писал(а):
ИМХО, если в статье на полном серьёзе употребляются слова "актуальная бесконечность", статью можно закапывать сразу.
Это почему? По-моему, это просто ссылка на соответствующую аксиому теории множеств.

migmit в сообщении #408464 писал(а):
Просто для математиков вопросы "потенциальной" и "актуальной" бесконечностей - давно пройденный этап.
Виктор Викторов попросил ссылку, а я хочу попросить хотя бы пояснений.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 11:50 
Заслуженный участник


10/08/09
599
epros в сообщении #408494 писал(а):
Это почему? По-моему, это просто ссылка на соответствующую аксиому теории множеств.

Очень хотел бы видеть контрпример - современную статью, содержащую что-нибудь дельное, и включающую слова "актуальная бесконечность", употреблённые не в ироническом смысле.

Впрочем, я забыл ещё одно исключение: статьи об истории науки.
epros в сообщении #408494 писал(а):
а я хочу попросить хотя бы пояснений.

Попробую. Всё нижеследующее - сугубое ИМХО, ИМХО и ещё раз ИМХО.

Ытак. Первое. Разграничение понятий "потенциальная" и "актуальная" бесконечность подразумевает, что первое есть некий процесс, протекающий во времени, в то время как второе есть нечто статичное. В современной математике "время" как таковое не существует. Я не хочу сказать, что в ней нет задач, удобно формулирующихся в терминах времени; просто "время" в этих задачах практически ничем не отличается от, допустим, пространственной координаты. Это просто $\mathbb R$. Математическое мышление доросло до такого уровня, что переход между восприятием чего-либо как процесса, и этой же вещи как статичной, существующей "мгновенно", не требует вообще никаких интеллектуальных усилий. Мы говорим о движущейся точке и одновременно думаем про функцию из $\mathbb R$ куда-то. Мы говорим о последовательности и думаем о функции из $\mathbb N$. Мы стали понимать, что "потенциальная бесконечность" и "актуальная бесконечность" означают, на самом деле, одно и то же.

Второе. Упомянутое разграничение возникло тогда, когда "актуальная бесконечность" казалась явлением парадоксальным, когда ещё не был развит аксиоматический подход. Почему-то математики считали, что первый вариант - "потенциальный" - не приводит к парадоксам, в то время как второй - "актуальный" - приводит. Аксиоматический подход позволяет абстрагироваться от того, как именно мы представляем себе происходящее - как процесс, или как состояние; наше представление - лишь удобный способ вести рассуждение, формализация же его от этого не зависит.

Как-то так.

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 12:41 
Заслуженный участник
Аватара пользователя


28/09/06
10982
migmit в сообщении #408512 писал(а):
Разграничение понятий "потенциальная" и "актуальная" бесконечность подразумевает, что первое есть некий процесс, протекающий во времени, в то время как второе есть нечто статичное.
По-моему, время тут вовсе не обязательно. "Потенциальная" может подразумевать "теоретически допустимая", но такая, действительное существование ("актуальность") которой мы не берёмся утверждать. Пример: General Set Theory, в которой нет аксиомы бесконечности, но которая изоморфна арифметике Пеано, т.е. способна судить об объектах, коих по нашим представлениям "бесконечное количество". Это всё - в рамках аксиоматического подхода.

Я понимаю, что в рамках классической логики очень трудно уловить разницу между "теоретически допустимым" и "действительно существующим" - классический логик мыслит любое утверждение о существовании либо как истинное, либо как ложное. Однако я призываю попытаться понять и подход конструктивизма, для которого "теоретическая допустимость" ($\neg \neg \exists x ~ \varphi(x)$) не обязательно влечёт за собой "действительное существование" ($\exists x ~ \varphi(x)$). Первое означает, что в рамках данной теории мы не можем опровергнуть утверждение о существовании объекта $x$, такого, что ... , т.е. мы вправе заложить его существование дополнительной аксиомой. А второе, собственно, означает, что аксиома о существовании такого объекта уже заложена.

migmit в сообщении #408512 писал(а):
Упомянутое разграничение возникло тогда, когда "актуальная бесконечность" казалась явлением парадоксальным, когда ещё не был развит аксиоматический подход. Почему-то математики считали, что первый вариант - "потенциальный" - не приводит к парадоксам, в то время как второй - "актуальный" - приводит.
Я полагаю, что дело не в парадоксальности (хотя раньше, возможно, многие именно это имели в виду), а в том, с насколько полной аксиоматикой мы имеем дело: акиома бесконечности может быть в неё заложена или не заложена. И я, по большому счёту, не вижу особого смысла её закладывать, поскольку полноты теории мы таким образом всё равно не добьёмся (как утверждает теорема Гёделя).

 Профиль  
                  
 
 Re: Дайте рецензию на работу Зенкина
Сообщение03.02.2011, 13:36 
Заслуженный участник


10/08/09
599
Скажите, остались ли математики, в повседневной работе пользующиеся упомянутой GST без аксиомы бесконечности?

Прежде, чем вы с возмущением воскликните "конечно, да!", я позволю себе уточнить этот момент.

Я знаю, что в некоторых случаях нужно - действительно, нужно - доказывать некое утверждение, используя ограниченный набор аксиом, например, чтобы иметь возможность интерпретировать его в иной ситуации - скажем, в каком-нибудь топосе, или что-то в этом роде. Я, однако, утверждаю, что в этом случае математик, проводящий доказательство, осознаёт, что работает в "под-теории" (я не знаю приставки, противоположной по смыслу "мета-"), оставляя за собой право использовать более полный набор аксиом для метатеории. В частности, может быть интересно найти конструктивное доказательство чего-либо (я сам был очарован доказательством того, что из существования биекции между 2A и 2B следует существование биекции между A и B, причём без использования аксиомы выбора), но при этом мы удовлетворимся и доказательством существования такого доказательства, причём оно уже может использовать весь спектр накопившихся в математике методов.

Я бы не сказал, что что-то подобное действительно означает "использование ограниченного набора аксиом". Не думаю, что сейчас найдётся математик, который скажет, что геометрией следует заниматься, используя лишь циркуль и линейку; мы можем вести рассуждения о том, что можно сделать при помощи этих инструментов, но не замедлим воспользоваться компьютером для подготовки статьи об этом.

epros в сообщении #408527 писал(а):
не вижу особого смысла её закладывать, поскольку полноты теории мы таким образом всё равно не добьёмся


Просто получим теорию, в которой удобнее работать, и всё.

В любом случае, я был бы рад увидеть контрпример к моему первому "ИМХО": современную статью (не на историческую тематику), содержащую что-либо разумное и использующую термин "актуальная бесконечность" не в ироническом смысле.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 114 ]  На страницу 1, 2, 3, 4, 5 ... 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group