2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Небольшое замечание
Сообщение10.08.2023, 15:12 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
mihaild в сообщении #1580374 писал(а):
В (7) нет ни $a$, ни $z - y$, так что откуда берется этот переход - непонятно
Вообще, Вы уже много лет похожими совершенно бесперспективными способами пытаетесь получить одно и то же. Проверяйте все рассуждения на случае $n = 2$, и если они тоже дают результат $z - y = 1$, то подход очевидно неправильный, ищите ошибку сами.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение01.09.2023, 08:56 


17/06/18
421
Нет здесь никакой ошибки. Все предлагаемые альтернативы- ерунда. Нельзя получить дробь при делении на самое себя.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение20.09.2023, 18:10 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
Есть, я указал, где, и указал, как подобный класс ошибок легко обнаруживать. Больше ничем помочь не могу.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение23.09.2023, 13:11 


17/06/18
421
Вы уже не раз, отрывочно ссылаетесь на квадраты. Ну если я такой недогадливый, почему бы Вам не написать, для разнообразия, обстоятельное разъяснение по этому вопросу? А может, я соглашусь с Вами целиком, и заброшу ВТФ куда подальше? Ведь это благо?

-- 23.09.2023, 14:12 --

Вы уже не раз, отрывочно ссылаетесь на квадраты. Ну если я такой недогадливый, почему бы Вам не написать, для разнообразия, обстоятельное разъяснение по этому вопросу? А может, я соглашусь с Вами целиком, и заброшу ВТФ куда подальше? Ведь это благо?

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение23.09.2023, 22:31 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
Потому что это потребует больше усилий, чем я готов приложить.
Могу начать:
Цитата:
Доказать что уравнение: $x^n+y^n=z^n$ (1), не имеет решений для натуральных $n=2$ и натуральных, взаимно простых $x, y, z$.
Предположим, что имеются натуральные, взаимно простые $x,y,z$, удовлетворяющие условию (1) для $n=2$, причем $x,z$ –нечетные, а $y$-четное число.
Пусть $y=x+k_1$, $z=x+k_2$ , где $k_1,k_2$ - натуральные числа.
Тогда: $(x +k_2)^2 - (x +k_1)^2= x^2$ ;
Или: $x^2 - 2( k_2 - k_1)x - (k_2^2 - k_1^2) = 0$ (2);
Продолжайте сами.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение24.09.2023, 21:06 


17/06/18
421
Вы хотите сказать, что если бы можно было доказать, что в тройке решения равенства Ферма для $n=3$ два старших числа- соседние, то это можно было бы доказать и для квадратов? А на основании того, что и в этом случае решения для кубов нет, оспаривать наличие решения для квадратов?

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение25.09.2023, 00:39 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
dick в сообщении #1611171 писал(а):
Вы хотите сказать, что если бы можно было доказать, что в тройке решения равенства Ферма для $n=3$ два старших числа- соседние, то это можно было бы доказать и для квадратов?
Не совсем так. Если бы это можно было доказать Вашим методом, то можно было бы доказать и для квадратов. А поскольку доказать для квадратов не получится никак, то Вашим методом доказать не получится и для кубов.
Так-то доказать про решение для кубов можно что угодно: берем любое доказательство отсутствия решения для кубов, и из него сразу следует что угодно про решения для кубов.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение25.09.2023, 11:00 


17/06/18
421
А мой метод это что? Утверждение что старшие числа решения - соседние?

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение25.09.2023, 11:21 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
А это неформализуемое понятие. Просто не видно, где в Ваших выкладках существенно используется что $n = 3$ а не $n = 2$.
Проверка, что доказательство не проходит для $n = 2$ - удобная эвристика. Естественно, всегда когда она срабатывает можно и конкретную ошибку указать, что я сделал чуть выше. Но она позволяет во многих случаях понять, что где-то ошибка есть, приложив сильно меньше усилий, чем нужно для поиска ошибки.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение25.09.2023, 12:36 


17/06/18
421
Ну вот хотя бы то, что для квадратов два младших члена разной четности, а для кубов - два старших. Не говоря уже о том, что сумма соседних чисел закрывает всю нечетную часть натурального ряда, что делает квадраты исключительной степенью.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение19.10.2023, 13:14 


17/06/18
421
Признаю, что был излишне категоричен в плане $(z-y)=1$. Хотя сути это не меняет.
Предположим, что при некоторых натуральных числах $x,y,z$, где $x$ не делится на 3, а $z$ и $y$ - разной четности, выполняется равенство: $x^3+y^3=z^3$ (1);
Перепишем (1) в виде: $x^3=(z-y)((z-y)^2+3zy)$ (1.1);
Если $x$- простое число, то $(z-y)=1$, и $x^3=(1+3zy)$ (1.2).
Если $x$ составное число, то $(z-y)$ может быть единицей или нечетным кубом больше 1. Иначе говоря, есть как минимум два варианта записи (1.1):
$x^3=(x_1^3)(x_2^3)$ (2.1); и $x^3=(1^3)(x_1^3x_2^3)$ (2.2);
Если выполняется (2.1), выполняется и (2.2), а если выполняется (2.2)- выполняется и (2.1), и наоборот. Отсюда следует, что бы доказать (1), достаточно доказать (1.2).

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение19.10.2023, 13:17 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
dick в сообщении #1613894 писал(а):
Если выполняется (2.1), выполняется и (2.2), а если выполняется (2.2)- выполняется и (2.1)
Напишите так, чтобы было понятно, где ставить кванторы. "Если существует вот такое решение, то существует и такое решение".

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение20.10.2023, 12:05 


17/06/18
421
Если существует решение (1) для соседних $z,y$, то существует решение (1) и для не соседних $z,y$.
Если существует решение (1) для не соседних $z,y$, то существует решение (1) и для соседних $z,y$.
Если не существует решение (1) для соседних $z,y$, то не существует решение (1) и для не соседних $z,y$.
Если не существует решение (1) для не соседних $z,y$, то не существует решение (1) и для соседних $z,y$.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение20.10.2023, 12:06 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
dick в сообщении #1614053 писал(а):
Если существует решение (1) для соседних $z,y$, то существует решение (1) и для не соседних $z,y$.
Во взаимно простых? Докажите.
dick в сообщении #1614053 писал(а):
Если существует решение (1) для не соседних $z,y$, то существует решение (1) и для соседних $z,y$.
Докажите.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение20.10.2023, 13:03 


17/06/18
421
Доказательство перед Вами. С чем Вы не согласны?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 84 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group