EminentVictorians, мы сейчас с Вами практически возвращаемся к теме "Основания математики с точки зрения
EminentVictorians". Я отвечу, но дальнейшее развитие темы в этом направлении может далеко выйти за пределы обсуждения конкретного вопроса из раздела помощи.
Частью определения формальной теории является определение формального языка. При Вашем подходе, Вам придется как минимум явно вводить формальный язык, вот буквально прямым текстом вводить множества констант, функциональных символов, предикатных символов.
Это всё не потребуется, ибо всем читателям по умолчанию известно. Все понимают, что в аксиоматику поля входят операции сложения и умножения и такие константы как нуль или единица, которые должны быть в сигнатуре теории. Также все в целом понимают, что такое синтаксис языка исчисления предикатов (по крайней мере, первого порядка), так что объяснять что такое кванторы в этой теме тоже никому не нужно.
Если что, "ввести функциональный символ" - это не просто написать его, а это еще и указать как минимум его арность (как я уже сказал где-то на той странице, я предпочитаю вводить явно сорта, а это значит, что придется указывать еще и сигнатуру; но я готов брать самые минимальные требования).
Насмешили от души.
Если вдруг в теме объявятся писатели, которые начнут рассказывать про арности сложения и умножения, отличные от двух, то по-моему их можно смело банить за невменяемость.
По-хорошему, для каждого языка определяется еще и исчисление предикатов в этом языке. И это, строго говоря, тоже будет частью определения формальной теории. Но я допускаю, что здесь можно выкрутиться, поэтому я не настаиваю на этом пункте, потому что уже без него Ваше определение комплексных чисел займет не меньше страницы.
О, да, конечно же исчисление предикатов. Я Вам сейчас расскажу, как мы "выкручиваемся". Просто по умолчанию обычно считается, что мы постараемся всё формализовать в классическом исчислении предикатов первого порядка, синтаксис и аксиоматика которого всем более или менее известны. Тут, конечно, могут быть тонкости, которых не избежала и эта тема. В частности, четвёртая аксиома внезапно оказывается невыразимой в исчислении предикатов первого порядка (ровно в том же смысле, что и аксиома индукции в арифметике Пеано). Но на этот случай, опять же, есть стандартные приёмы "выкручивания":
1) Можно использовать схему аксиом для "любой формулы, выразимой в языке". При этом придётся смириться с некатегоричностью теории.
2) Можно сформулировать метааксиому на метаязыке, каковым обычно выступает язык теории множеств. Разумеется, при этом заметается под ковёр вопрос, в каком исчислении будет формализована метатеория (читай: теория множеств), а значит и вопрос категоричности теории.
3) Можно формализовать теорию в исчислении предикатов второго порядка (например, монадическом), а значит принять в гости всех тараканов, связанных с различиями семантик и т.п. Этот вариант - совсем не для тех, кого устраивают поверхностные решения. Зато можно будет глубокомысленно (ссылаясь на полную семантику) утверждать категоричность теории, ни в малой степени не погрешив против логики.
Вот только, по-моему, это уже довольно далеко выходит за пределы вопросов темы.
А я еще даже не начинал говорить про интерпретацию (т.е. на этом этапе никакого представления комплексных чисел еще нету).
Вопрос в том, что Вы называете "представлением комплексных чисел". По моим понятиям любые "представления" о чём бы то ни было - это теории, каковые на бумаге могут существовать только в форме аксиоматик (хотя в фантазиях некоторых могут существовать также т.н. "содержательные теории", невыразимые никакими аксиоматиками).
При этом я догадываюсь, что Вы можете считать, что получите "представление о комплексных числах" только после того, как построите их модель. Так вот:
1) Модель комплексных чисел - это модель аксиоматики комплексных чисел.
2) Модель аксиоматики (она же - интерпретация языка теории, в которой выполнены все аксиомы) строится в рамках метатеории, имеющей собственную аксиоматику. И нужна она обычно только для какого-то дополнительного анализа аксиоматики. Ибо на некоторые вопросы может ответить только метатеория. Например, доказать неразрешимось некоего вопроса в рамках заданной аксиоматики без метатеории невозможно.
Но в целом построение модели вовсе не является обязательным.
Вы видели хоть один учебник (не логики), в котором были бы такие определения
и
?
Ха, все такие. Просто Вы почему-то считаете, что аксиомы должны быть изложены на строго формальном языке, да ещё и с подробным изложением в преамбуле синтаксиса этого языка. А на самом деле большинство аксиом прекрасно формулируются человеческими словами, ибо перевод их на формальный язык - тривиальная задача (для знающего человека).