2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14  След.
 
 Re: Еще один вариант для кубов
Сообщение31.12.2022, 01:00 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
А, если вы предполагаете что $a = 6$, то $z - y = 1$, $x = 7 = 6 + 1$, и никакого $n$ тут не нужно. Из вашей формулировки было не очень понятно, что вы рассматриваете только случай $a = 6$.
Следует ли считать, что до дальнейшего явного указания будет $a = 6$?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение31.12.2022, 07:55 


17/06/18
409
$(z-y)=1$ это единственный вариант для $a=6$. Но если $a>6$, возможно и $(z-y)=1$, и $(z-y)=6n+1$, и $(z-y)=6n+5$.
А вот $(z-y)=5$ невозможно, потому что 5 не может быть кубом.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение31.12.2022, 12:50 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
Ну хорошо, $z - y = 6n \pm 1$ (тут даже про кубы думать не надо, достаточно того, что $x$ нечетное и не делится на $3$, кстати поэтому и $x = 6n \pm 1$ даже без рассмотрения $a$), $z - y$ точный куб, $z - y < a$, и если $a = 6$ то $z - y = 1$. Что дальше?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение31.12.2022, 20:20 


17/06/18
409
Варианты $(z-y)=6n+1$ и $(z-y)=6n+5$ являются непрмитивными решениями по отношению к $(z-y)=1$.
И поэтому исключаются. С Наступающим !

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение31.12.2022, 22:26 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
dick в сообщении #1575770 писал(а):
Варианты $(z-y)=6n+1$ и $(z-y)=6n+5$ являются непрмитивными решениями по отношению к $(z-y)=1$.
Я не знаю, что такое "непримитивное решение по отношению к другому решению". Я знаю только, что такое "примитивное решение" (в котором $x, y, z$ взаимно просты), и то, что решение с например $z - y = 125$ непримитивно - надо доказывать.
(ну либо каким-то другим способом показать, что если существует решение с $z - y = 125$, то существует и решение с $z - y = 1$)

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 11:02 


17/06/18
409
Вы хотите чтобы я доказывал, что 1(125)=125 ?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 13:28 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
Нет, я хочу, чтобы вы объяснили, что значит
dick в сообщении #1575770 писал(а):
Варианты $(z-y)=6n+1$ и $(z-y)=6n+5$ являются непрмитивными решениями по отношению к $(z-y)=1$

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 18:07 


17/06/18
409
Значит, что если $(z-y)=1$ это примитивное решение для (1), то $(z-y)=6n+1$ и $(z-y)=6n+5$ являются непримитивными решениями (1).

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 19:51 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
Вы опять пытаетесь обозначить одной буквой разные вещи. Если $z - y = 1$ (и еще что-то), то уж точно никак не получится, что $z - y = 6n + 1$.
Видимо, вы имеете в виду что-то в таком роде:
Пусть $x, y, z$ - примитивное решение (1) [давайте тут для простоты добавим в условия (1) что $x$ нечетное и не делится на $3$, чтобы каждый раз не повторять], причем $z - y = 1$.
Тогда, если $x', y', z'$ - решение (1), причем $z - y = 6n + 5$ [тут кстати надо хотя бы раз написать, каким вы полагаете $n$; понятно, что оно целое неотрицательное, но может ли оно быть равным 0 - догадаться сложно], то у $x', y', z'$ есть общий делитель (т.е. они образуют непримитивное решение).
Вы это имели в виду, или что-то другое? Если что-то другое, то напишите, что. Если это - то, думаю, минимум одну из двух имеющихся в этом рассуждении проблем вы найти сможете.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 20:39 


17/06/18
409
Я это имел ввиду.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 20:44 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
Тогда в этом рассуждении есть две проблемы:
1. Если вообще не существует решения с $z - y = 1$, то оно даже формально ничего не утверждает о существовании решения с $z - y = 125$.
2. Переход не доказан.

А почему, если вы это имели в виду, вы не написали что-то подобное, чтобы не приходилось догадываться? Не так сложно, просто не переиспользуйте обозначения, а при необходимости вводите новые буквы. И явно формулируйте утверждения в виде "если что-то, то что-то".

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение01.01.2023, 22:18 


17/06/18
409
Начнем с конца. Критику принимаю, но не так просто переводить мысли в предельно доступную для читателя форму, ну и длиннее конечно.

По пункту 1. У меня ощущение, что Вы еще не поняли, в чем дело. Если вообще не существует решения с $(z-y)=1$, то не существует никакого решения. Потому что, $(z-y)=1$ является примитивным решением для всего множества натуральных чисел, ну а применительно к нашим баранам, для всего множества натуральных кубов.

По пункту 2. О каком переходе речь?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.01.2023, 01:40 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
dick в сообщении #1575909 писал(а):
Если вообще не существует решения с $(z-y)=1$, то не существует никакого решения
Это надо доказать.
Это было бы очевидно, если бы по решению $x_1, y_1, z_1$ с $z_1 - y_1 > 1$ можно было бы построить решение $x_2, y_2, z_2$ с $z_2 - y_2 < z_1 - y_1$ (спуск; именно таким способом доказывается, что если существует какое-то решение, то существует примитивное решение).
dick в сообщении #1575909 писал(а):
Потому что, $(z-y)=1$ является примитивным решением для всего множества натуральных чисел
Я не знаю, что значит "быть примитивным решением для всего множества натуральных чисел". Я знаю только что значит "быть примитивным решением".
dick в сообщении #1575909 писал(а):
О каком переходе речь?
Что из существования примитивного решения с $z - y = 1$ следует что решение с $z' - y' = 125$ непримитивно.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.01.2023, 10:30 


17/06/18
409
Интересное кино получается, куб $(z-y)=1$ это примитивное решение, но из этого не следует что куб $(z_1-y_1)=125$ это непримитивное решение. Разве 125 не делится на 1?
Мне кажется, Вам нужно как-то объясниться. Без этого, Ваше "не доказано" выглядит слишком бледно.
Тем более, что сами пеняли мне на недостаток ясности.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.01.2023, 12:27 
Заслуженный участник
Аватара пользователя


16/07/14
8481
Цюрих
dick в сообщении #1575948 писал(а):
Мне кажется, Вам нужно как-то объясниться
Нет, это вам нужно доказать, что $x_1, y_1, z_1$ - это непримитивное решение. А именно, доказать что у этих чисел есть общий множитель.
А то знаете, я много разных функций от $x, y, z$ придумать могу, и на примитивных решениях они могут принимать самые разные значения.
dick в сообщении #1575948 писал(а):
Без этого, Ваше "не доказано" выглядит слишком бледно
Куда уж яснее. Я указал конкретный переход, который вы не обосновываете вообще никак. В этом месте его нужно либо расписать как последовательность переходов, либо четко сослаться на какой-то известный результат, показав, что ваш переход получается из известного результата какой-то подстановкой.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 207 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: transcendent


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group