Если вопрос является непомерно глупым, прошу - не утруждать себя в разъяснениях, а просто сообщить об этом.
Ваш вопрос кажется мне чрезвычайно интересным. Другое, что на него в двух словах не ответишь. Мыслей по этому поводу у меня много. И я их разобью на несколько постов. Хотя движок форума имеет тенденцию объединять посты.
Мысль первая. С математическим образованием для тех, кто хочет понять и усвоить математику, что-то не так. Для тех, кто ничего не хочет, наверное, всё идёт правильно. Возможно у меня довольно странные мысли по этому поводу. Но я потихоньку убеждаюсь, что не только у меня одного. Например, я тут просмотрел несколько ютубовских роликов с преподавателями мехмата. Обратил внимание, что многие не ходили на лекции и не писали конспекты. Причём экзамены сдавали досрочно и на отлично. Сначала расскажу, как я изучал анализ. У меня это изучение распалось на четыре этапа. (Не надо думать, что этапы следовали строго один за другим. То есть, в какой-то части анализа я мог быть на одном этапе, а в другой на другом). Этап первый. Анализ состоит из нескольких базовых понятий - дифференциал, интеграл, ряд и т.д. Их не так много, но и не так мало, учитывая, что интегралов разных достаточно много. Так на первом этапе я просто просматривал учебник, пытаясь понять, что эти понятия вообще означают. Понятно, что ни в какие доказательства я не вникал. Пытался понять лишь суть определений. Этап второй. На этом этапе я пытался осмыслить, а что с этими понятиями можно делать, какие операции с ними доступны. Я брал учебник и пытался разобраться с разобранными там примерами. Их много, например, в Фихтенгольце. И в Зориче тоже порядочно. В задачник я при этом не лез, чтобы не погрязнуть в бесконечном обилии похожих примеров. После этого суть определений мне становилось более понятной. На третьем этапе я пытался понять, а для чего всё это нужно. Анализ ведь был придуман не сам по себе, а сначала для потребностей физики и техники. Затем появились и другие приложения. На этом этапе я смотрел учебник Фихтенгольца и читал там про многочисленные приложения производных, рядов и интегралов (главным образом в геометрии и в физике). Также открывал учебник физики (какая-то элементарная физика у нас тоже была). И пытался применить полученные знания там. После этих трёх этапов я уже отчётливо ориентировался в анализе, понимал, что там к чему и для чего. И как можно его применять. Но ни одно доказательство я ещё толком не знал. После чего наступал четвёртый этап. Уже ничего не боясь и как-бы всё понимая (хотя на самом деле это было не так), я постепенно начинал осваивать доказательства.
Интересно, что моё понимание, как надо двигаться, я увидел и у других. Я как-то читал вспоминания известных математиков. Некоторые из них знакомство с анализом начинали в школе. Но не с учебников для математиков. Как правило им в руки попадалась совершенно случайная книга, возможно типа курса высшей математики для инженеров. Один известный математик (уже не помню кто) писал, что ни в коем случае не стоит школьникам в начале изучения брать строгие книги по анализу для математиков. Они вообще не про анализ. Они про то, как этот анализ обосновать. А если ещё пытаешься строго обосновать вещи, которые не понимаешь, для чего они предназначены, то в голове получается полная неразбериха.
-- Чт ноя 24, 2022 12:40:55 --Я не знаю, куда иду, потому спотыкаюсь. Вопрос таков: куда это все ведёт? Что мне ходят рассказать?
На вопрос, куда это всё ведёт, и что вам хотят рассказать, я отвечать не буду. Вы сами должны будете ответить на эти вопросы. Я лишь попытаюсь вам помочь найти ответ. Почему я не буду отвечать? Потому что ваши вопросы до конца не понимаю. Например, "куда это всё ведёт". А что именно "это"? "Что мне ходят рассказать?". Кто именно, Зорич? Или может Шапошников? В каком именно месте? Из ваших постов я совершенно не понял, в каком месте изучения анализа вы находитесь.
Я вам посоветую план действий на ближайшее время. Берёте в руки первый том Зорича. И пытаетесь разобраться, что вы усвоили из него, а что нет. Если что-то не усвоили, то ничего страшного нет. Там есть некоторые места, которые можно безболезненно опустить при первом чтении. А как можно разобраться, что усвоили, а что нет? Пытаетесь решить задачи из того же Зорича. Задачи там разные. Некоторые простые, а некоторые и не очень.
После того, как вам будет ясно, что вы усвоили из первого тома Зорича, пишите нам об этом. Чтобы мы тоже знали о ваших успехах. Чтобы составить план дальнейших действий. Думаю, что после этого надо ни в коем случае не ориентироваться на второй том Зорича. Он не для школьника. Надо будет взять учебник анализа попроще и попытаться освоить его. Освоить именно в тех местах, которые вы ещё не освоили по Зоричу. При этом ничего страшного не будет, если наиболее сложные доказательства теорем вы опустите. Но зато вы ответите на свой вопрос, куда это всё ведёт.
Дальше опять пишите на форум. Будем думать, куда идти дальше.