Проверьте, плиз, решение задачи 13.2, д). Там требуется вычислить следующий определитель:
![$\begin{vmatrix}1 & 2 & 3 & 4 & \ldots & n-3 & n-2 & n-1 & n\\
2 & 3 & 4 & 5 & \ldots & n-2 & n-1 & n & n\\
3 & 4 & 5 & 6 & \ldots & n-1 & n & n & n\\
4 & 5 & 6 & 7 & \ldots & n & n & n & n\\
\hdotsfor{9}\\
n-3 & n-2 & n-1 & n & \ldots & n & n & n & n\\
n-2 & n-1 & n & n & \ldots & n & n & n & n\\
n-1 & n & n & n & \ldots & n & n & n & n\\
n & n & n & n & \ldots & n & n & n & n
\end{vmatrix}$ $\begin{vmatrix}1 & 2 & 3 & 4 & \ldots & n-3 & n-2 & n-1 & n\\
2 & 3 & 4 & 5 & \ldots & n-2 & n-1 & n & n\\
3 & 4 & 5 & 6 & \ldots & n-1 & n & n & n\\
4 & 5 & 6 & 7 & \ldots & n & n & n & n\\
\hdotsfor{9}\\
n-3 & n-2 & n-1 & n & \ldots & n & n & n & n\\
n-2 & n-1 & n & n & \ldots & n & n & n & n\\
n-1 & n & n & n & \ldots & n & n & n & n\\
n & n & n & n & \ldots & n & n & n & n
\end{vmatrix}$](https://dxdy-04.korotkov.co.uk/f/b/7/c/b7c7151f2d0427f4fbd0c9f84fd899f182.png)
. В указании из ответа сказано, что нужно из каждого столбца, начиная с последнего, вычесть предыдущий. Я так понимаю, что это указание не относится к первому, так что получаю:
![$\begin{vmatrix}1 & 2 & 3 & 4 & \ldots & n-3 & n-2 & n-1 & n\\
2 & 3 & 4 & 5 & \ldots & n-2 & n-1 & n & n\\
3 & 4 & 5 & 6 & \ldots & n-1 & n & n & n\\
4 & 5 & 6 & 7 & \ldots & n & n & n & n\\
\hdotsfor{9}\\
n-3 & n-2 & n-1 & n & \ldots & n & n & n & n\\
n-2 & n-1 & n & n & \ldots & n & n & n & n\\
n-1 & n & n & n & \ldots & n & n & n & n\\
n & n & n & n & \ldots & n & n & n & n
\end{vmatrix}=\begin{vmatrix}1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 1\\
2 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 0\\
3 & 1 & 1 & 1 & \ldots & 1 & 1 & 0 & 0\\
4 & 1 & 1 & 1 & \ldots & 1 & 0 & 0 & 0\\
\hdotsfor{9}\\
n-3 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 & 0\\
n-2 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0\\
n-1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\
n & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{vmatrix}$ $\begin{vmatrix}1 & 2 & 3 & 4 & \ldots & n-3 & n-2 & n-1 & n\\
2 & 3 & 4 & 5 & \ldots & n-2 & n-1 & n & n\\
3 & 4 & 5 & 6 & \ldots & n-1 & n & n & n\\
4 & 5 & 6 & 7 & \ldots & n & n & n & n\\
\hdotsfor{9}\\
n-3 & n-2 & n-1 & n & \ldots & n & n & n & n\\
n-2 & n-1 & n & n & \ldots & n & n & n & n\\
n-1 & n & n & n & \ldots & n & n & n & n\\
n & n & n & n & \ldots & n & n & n & n
\end{vmatrix}=\begin{vmatrix}1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 1\\
2 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 0\\
3 & 1 & 1 & 1 & \ldots & 1 & 1 & 0 & 0\\
4 & 1 & 1 & 1 & \ldots & 1 & 0 & 0 & 0\\
\hdotsfor{9}\\
n-3 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 & 0\\
n-2 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0\\
n-1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\
n & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{vmatrix}$](https://dxdy-01.korotkov.co.uk/f/8/1/d/81d4449f0e4c10c2079831a7a7e4c67682.png)
. Последний полученный определитель равен произведению своих элементов, стоящих на второй, не главной, диагонали, взятому с соответствующим знаком. Этот знак определяется четностью/нечетностью следующей перестановки (в том смысле перестановки, в котором это понятие используется в изучаемом курсе Кострикина):
![$\begin{pmatrix}1 & 2 & 3 & 4 & \ldots & n-3 & n-2 & n-1 & n\\
n & n-1 & n-2 & n-3 & \ldots & 4 & 3 & 2 & 1
\end{pmatrix}$ $\begin{pmatrix}1 & 2 & 3 & 4 & \ldots & n-3 & n-2 & n-1 & n\\
n & n-1 & n-2 & n-3 & \ldots & 4 & 3 & 2 & 1
\end{pmatrix}$](https://dxdy-01.korotkov.co.uk/f/c/3/b/c3b49a002b008329af925b9b79ff793e82.png)
. Короче, у меня получается, что этот определитель равен
![$(-1)^{{\displaystyle \sum_{i=1}^{n-1}i}}n=(-1)^{\frac{n(n-1)}{2}}n$ $(-1)^{{\displaystyle \sum_{i=1}^{n-1}i}}n=(-1)^{\frac{n(n-1)}{2}}n$](https://dxdy-01.korotkov.co.uk/f/0/9/5/095da5aaf924f26229c9c81db9136d4382.png)
. В ответе же вот что:
![$(-1)^{n(n-1)}2n$ $(-1)^{n(n-1)}2n$](https://dxdy-03.korotkov.co.uk/f/a/7/8/a7817b2f4ff62cb9732af5535b7f15d182.png)
. Это же ошибка? Не говоря уже о том, что выражение в ответ просто равно
![$2n$ $2n$](https://dxdy-01.korotkov.co.uk/f/4/7/c/47c124971e1327d1d3882a141f95face82.png)
, так что множитель -1 в степени непонятно, зачем там и написан.