2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 25, 26, 27, 28, 29, 30, 31 ... 42  След.
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение10.05.2021, 12:49 
Заслуженный участник


20/08/14
11867
Россия, Москва
Yury_rsn в сообщении #1517917 писал(а):
Хотелось бы проверить гипотезу из последнего абзаца для следующих простых. >37
Это как бы просьба, обращенная к Дмитрию :-)
Нереально. Я пока не понял как ограничить полный перебор, а он уже для 47# (два известных значения для 41# можете проверить сами) займёт недели.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение10.05.2021, 21:24 


01/07/19
244
Yury_rsn в сообщении #1517466 писал(а):
Тоже 12 столбцов, но они создают интервал d=38.
Разница зависит от начального значения по mod 6


Надо, наверное, пояснить.
При одинаковом количестве столбцов длина интервала может отличаться на 2 единицы.

Что происходит:
- Вычеркиваем из ряда числа, кратные 2 и 3.

- Между оставшимися числами разности чередуются - 2, 4, 2, 4, ...
Т.е., остаются числа вида 6n+1 и 6n-1. (5, 7, 11, 13, 17, 19, 23, 25, ... )

Если какой-то интервал начинается с 6n-1, то он короче, при том же количестве чисел.
Например, 5,7,11,13 - длина 8.

А четыре столбца начиная с 6n+1 - больше на 2.
7,11,13,17 - длина 10

-- 10.05.2021, 22:33 --

Dmitriy40 в сообщении #1517939 писал(а):
Yury_rsn в сообщении #1517917 писал(а):
Хотелось бы проверить гипотезу из последнего абзаца для следующих простых. >37
Это как бы просьба, обращенная к Дмитрию :-)
Нереально. Я пока не понял как ограничить полный перебор, а он уже для 47# (два известных значения для 41# можете проверить сами) займёт недели.

Ну да :-( Для поиска контрпримера надо перебрать всё ПСВ.
Попробую в следующих комментах привести некоторые соображения - как "могут быть" построены максимальные интервалы. Тогда хотя бы их попробуем найти.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение10.05.2021, 22:37 


31/12/10
1555
Мне кажется, что выражение "столбцы" неудачное.
По теории чисел это число вычетов по модулю 6
содержащихся в интервале d. Это число зависит
не от начальных чисел интервала, но от самого интервала.
Если интервал кратен 6, то число вычетов равно 2d/6 и разности между вычетами
будут 4-2-4-2 ....4-2 или 2-4-2-4.....2-4
Если не кратен, то число вычетов определяется с помощью сравнения
$d \mod 6$
При любом остатке 2 или 4 число вычетов равно $2[d/6] + 1$, но сами
интервалы будут отличаться на 2.
При остатке 2:
2-4-2-4.....4-2
При остатке 4:
4-2-4-2....2-4

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение10.05.2021, 23:05 


01/07/19
244
Несколько интересных примеров.
Максимальный интервал d=66 вычеркивает двадцать один столбец на "логарифмической линейке".
Посмотрим, какие взаимные расположения строк позволяют вычеркнуть 20 столбцов.

В первую очередь картинка на "стыках праймориалов".

$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&5&.&.&.&.&.&.&5&.&.&5&.&.&.&.&.&.&5&. \\
7&.&.&.&.&.&.&.&7&.&.&.&.&7&.&.&.&.&.&.&. \\
11&.&.&.&.&.&.&11&.&.&.&.&.&.&11&.&.&.&.&.&. \\
13&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.&.&.  \\
17&.&.&.&.&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&. \\
19&.&.&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&. \\
23&.&.&23&.&.&.&.&.&.&.&.&.&.&.&.&.&.&23&.&. \\
29&29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&29 \\
31&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&. \\
\end{tabular}$

И еще два варианта:

$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&.&5&.&.&5&.&.&.&.&.&.&5&.&.&5&.&.&.&. \\
7&.&.&.&7&.&.&.&.&7&.&.&.&.&.&.&.&.&7&.&. \\
11&.&.&.&.&.&.&11&.&.&.&.&.&.&11&.&.&.&.&.&. \\
13&.&.&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.  \\
17&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&.&.&.&.&. \\
19&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&.&.&. \\
23&.&.&.&.&23&.&.&.&.&.&.&.&.&.&.&.&.&.&.&23 \\
29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&29&. \\
31&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&. \\
\end{tabular}$


$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&.&.&5&.&.&5&.&.&.&.&.&.&5&.&.&5&.&.&. \\
7&7&.&.&.&.&7&.&.&.&.&.&.&.&.&7&.&.&.&.&7 \\
11&.&.&.&.&.&.&.&.&.&.&.&11&.&.&.&.&.&.&11&. \\
13&.&.&.&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.  \\
17&,&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&.&.&.&. \\
19&,&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&.&. \\
23&.&.&.&.&.&.&.&.&.&.&23&.&.&.&.&.&.&.&.&.&. \\
29&.&.&.&.&29&.&.&.&.&.&.&.&.&.&.&.&.&.&,&. \\
31&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&.&.&.&. \\
\end{tabular}$

Примеры отсортированы по возрастанию количества "свободных агентов".
В первом случае только 31 и 37 встречаются поодиночке.
Есть только возможность перестановки их между друг другом.

Во втором примере одиночных чисел в строках уже три - 29,31, 37.
Если цепочки (больше одного числа в строке) остаются неподвижными, то таких интервалов уже будет 6. Не считая зеркальных.

Во третьем примере одиночных чисел в строках уже четыре - 23, 29,31, 37.
Вариантов, не считая зеркальных, - $4! = 24$

-- 11.05.2021, 00:09 --

vorvalm в сообщении #1518050 писал(а):
Мне кажется, что выражение "столбцы" неудачное.

Как бы само собой видится - двумерное изображение таблицы состоит из строк и столбцов.
Чем это слово можно заменить?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 00:18 


01/07/19
244
А теперь предлагаю сопоставить таблицу на стыках и два максимальных интервала.
"Стыки праймориалов" дают длину интервала d=62. Два других интервала имеют длину d=66.

Таблица "на стыках" интересна тем, что она симметрична. Ее можно условно назвать главным интервалом
И тогда можно рассматривать в других таблицах - смещения строк относительно главного интервала.

$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&5&.&.&.&.&.&.&5&.&.&5&.&.&.&.&.&.&5&. \\
7&.&.&.&.&.&.&.&7&.&.&.&.&7&.&.&.&.&.&.&. \\
11&.&.&.&.&.&.&11&.&.&.&.&.&.&11&.&.&.&.&.&. \\
13&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.&.&.  \\
17&.&.&.&.&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&. \\
19&.&.&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&. \\
23&.&.&23&.&.&.&.&.&.&.&.&.&.&.&.&.&.&23&.&. \\
29&29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&29 \\
31&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&. \\
\end{tabular}$

Возьмем за базовый ориентир "малое плечо" в строке 5.
Т.е., две пятерки, расположенные друг от друга через две ячейки.
Будем рассматривать смещения всех строк относительно их базового расположения в главном интервале.

$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&5&.&.&5&.&.&.&.&.&.&5&.&.&5&.&.&.&.&.&.&5&. \\
7&.&7&.&.&.&.&7&.&.&.&.&.&.&.&.&7&.&.&.&.&7&. \\
11&.&.&.&.&11&.&.&.&.&.&.&11&.&.&.&.&.&.&.&.&.&. \\
13&.&.&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.&.&.  \\
17&.&.&.&.&.&.&.&.&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&. \\
19&.&.&.&.&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&. \\
23&.&.&23&.&.&.&.&.&.&.&.&.&.&.&.&.&.&23&.&.&.&. \\
29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&29&.&.&.&.&.&.&.&.&. \\
31&.&.&.&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&.&. \\
\end{tabular}$

В этой таблице:
Строка 7 смещена относительно базового расположения вправо на 6 позиций. (+6)
Строка 11 смещена относительно базового расположения влево на 4 позиции (-4)
Строка 13 осталась на месте. (0)
Строка 17 смещена относительно базового расположения влево на 2 позиции (-2)
Строка 19 осталась на месте. (0)
Строка 23 смещена относительно базового расположения влево на 2 позиции (-2)

В остальных строках остались одиночные числа. (Слишком много вариантов смещений, пока опустим)
---
$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&5&.&.&5&.&.&.&.&.&.&5&.&.&5&.&.&.&.&.&.&5&. \\
7&.&.&7&.&.&.&.&.&.&.&.&7&.&.&.&.&7&.&.&.&.&.&. \\
11&.&.&.&.&.&.&.&.&11&.&.&.&.&.&.&11&.&.&.&.&.&. \\
13&.&.&.&.&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.  \\
17&.&.&.&.&.&.&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&. \\
19&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&.&.&.&.&. \\
23&.&.&.&.&23&.&.&.&.&.&.&.&.&.&.&.&.&.&.&23&.&. \\
29&.&.&.&.&.&29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&. \\
31&.&.&.&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&37&.&.&.&.&.&.&. \\
\end{tabular}$

В этой таблице:
Строка 7 смещена относительно базового расположения вправо на 2 позиции. (+2)
Строка 11 осталась на месте. (0)
Строка 13 смещена относительно базового расположения вправо на 2 позиции. (+2)
Строка 17 осталась на месте. (0)
Строка 19 смещена относительно базового расположения влево на 4 позиции (-4)
Строка 23 осталась на месте. (0)

---
Наблюдение:
В первом случае смещений, на базовых местах остались 13 и 19.
А во втором случае - 11, 17 и 23.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 09:00 


31/12/10
1555
А в какой ПСВ находится интервал $d=64 $ ?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 12:50 
Заслуженный участник


20/08/14
11867
Россия, Москва
vorvalm в сообщении #1518087 писал(а):
А в какой ПСВ находится интервал $d=64 $ ?
Dmitriy40 в сообщении #1513500 писал(а):
37#=7420738134810:
...
64/4683065593,151152153883
...

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 16:00 


31/12/10
1555
Замечательно, но я рассчитывал на расклад по цепочкам простых.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 16:03 


01/07/19
244
Хорошо. Сопоставим главный интервал с интервалами d=64.
Опять привожу сначала Главный интервал ("на стыках")
$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&5&.&.&.&.&.&.&A&.&.&A&.&.&.&.&.&.&5&. \\
7&.&.&.&.&.&.&.&7&.&.&.&.&7&.&.&.&.&.&.&. \\
11&.&.&.&.&.&.&11&.&.&.&.&.&.&11&.&.&.&.&.&. \\
13&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.&.&.  \\
17&.&.&.&.&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&. \\
19&.&.&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&. \\
23&.&.&23&.&.&.&.&.&.&.&.&.&.&.&.&.&.&23&.&. \\
29&29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&29 \\
31&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&. \\
\end{tabular}$

И два вот этих:
Цитата:
Dmitriy40 в сообщении #1513500 писал(а):
37#=7420738134810:
...
64/4683065593,151152153883


Базовые пятерки, для определенности, я пометил буквами А.
Опять рассмотрим смещения всех строк относительно их базового расположения в главном интервале.

4683065593
$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&.&.&5&.&.&5&.&.&.&.&.&.&A&.&.&A&.&.&. \\
7&7&.&.&.&.&7&.&.&.&.&.&.&.&.&7&.&.&.&.&7 \\
11&.&.&.&.&.&.&.&.&.&.&.&11&.&.&.&.&.&.&11&. \\
13&.&.&.&.&.&.&.&.&13&.&.&.&.&.&.&.&.&13&.&.  \\
17&.&17&.&.&.&.&.&.&.&.&.&.&17&.&.&.&.&.&.&. \\
19&.&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&.&.&. \\
23&.&.&.&.&.&.&.&.&.&.&23&.&.&.&.&.&.&.&.&. \\
29&.&.&.&.&29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&. \\
31&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&.&.&.&. \\
\end{tabular}$


В этой таблице:
Строка 7 смещена относительно базового расположения вправо на 2 позиции. (+2)
Строка 11 осталась на месте. (0)
Строка 13 - (-2)
Строка 17 - (-8)
Строка 19 - (-6)

В остальных строках остались одиночные числа 23, 29, 31, 37
Т.е, не считая зеркальных отражений, этих интервалов (с неподвижными строками 5, 7, 11, 13, 17, 19) будет 24 штуки. Вместе с зеркальными - 48.
---
151152153883 - а это, оказывается, тот же самый интервал, только зеркально отображенный относительно вертикальной оси.
Зеркально отобразились только цепочечные строки 5, 7, 11, 13, 17, 19.
Одиночные числа расположены в другом порядке.

$\begin{tabular}{l|rcccccccccccccccccccccccccc}
\hline
5&.&.&.&A&.&.&A&.&.&.&.&.&.&5&.&.&5&.&.&. \\
7&7&.&.&.&.&7&.&.&.&.&.&.&.&.&7&.&.&.&.&7 \\
11&.&11&.&.&.&.&.&.&11&.&.&.&.&.&.&.&.&.&.&. \\
13&.&.&13&.&.&.&.&.&.&.&.&13&.&.&.&.&.&.&.&.  \\
17&.&.&.&.&.&.&.&17&.&.&.&.&.&.&.&.&.&.&17&. \\
19&.&.&.&.&19&.&.&.&.&.&.&.&.&.&.&.&.&19&.&. \\
23&.&.&.&.&.&.&.&.&.&.&23&.&.&.&.&.&.&.&.&. \\
29&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&29&.&.&.&. \\
31&.&.&.&.&.&.&.&.&.&.&.&.&31&.&.&.&.&.&.&. \\
37&.&.&.&.&.&.&.&.&.&37&.&.&.&.&.&.&.&.&.&. \\
\end{tabular}$

-- 11.05.2021, 17:13 --

Вернемся к 23#, d=40

\begin{tabular}{l|rccccccccccccccc}
\hline
5&.&5&.&.&.&.&.&.&A&.&.&A&.&. \\
7&.&.&.&.&.&7&.&.&.&.&7&.&.&. \\
11&.&.&11&.&.&.&.&.&.&11&.&.&.&. \\
13&.&.&.&13&.&.&.&.&.&.&.&.&13&.  \\
17&.&.&.&.&.&.&.&17&.&.&.&.&.&. \\
19&.&.&.&.&.&.&19&.&.&.&.&.&.&. \\
23&.&.&.&.&23&.&.&.&.&.&.&.&.&. \\
\end{tabular}

Смещение цепочек относительно главного интервала выглядит так:
7 (-2)
11 (-4)
13 (-2)

\begin{tabular}{l|rccccccccccccccc}
\hline
5&.&.&.&.&.&A&.&.&A&.&.&.&.&. \\
7&.&.&.&.&7&.&.&.&.&7&.&.&.&. \\
11&.&.&.&11&.&.&.&.&.&.&11&.&.&. \\
13&.&.&13&.&.&.&.&.&.&.&.&13&.&.  \\ 
17&.&17&.&.&.&.&.&.&.&.&.&.&17&. \\
19&.&.&.&.&.&.&19&.&.&.&.&.&.&. \\ 
23&.&.&.&.&.&.&.&23&.&.&.&.&.&. \\ 
\end{tabular}

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 17:35 


01/07/19
244
vorvalm в сообщении #1511021 писал(а):
Пример 2
$d=90$.
(0,4,6,10,12,16,18,22,24,28,30,34,36,40,42,48,52,54,58,60,64,66,70,72,76,78,82,64,88,90)
Всего вычетов 31. Надо вычеркнуть 29 вычетов.
Определяем цепочки сравнимых вычетов.

$p=5,\;(12,22,42,52,72,82),\;N=6.$
$p=7,\;(4,18,46,60,88),\;\;\;\;\;\;\;N=5.$
$p=11,\;(10,54,76),\;\;\;\;\;\;\;\;\;\;\;\;N=3.$
$p=13,\;(6,58,84),\;\;\;\;\;\;\;\;\;\;\;\;N=3$
$p=17,\;(30,64),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=2$
$p=19,\;(28.66),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=2.$
$p=23,\;(24,70),\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=2.$
$p=29,\;(-),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=1.$
$p=31,\;(16,78),\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=2.$
$p=37,\;(-),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=1.$
$p=41,\;(-),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=1.$
$p=43,\;(-),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;N=1.$

$\sum N=29.$ Следовательно, разности $d=90$ есть в ПСВ по модулю $M(43).$
В нашем случае $P_4=4! =24.$ Но т.к. разность $d=90$ может быть представлена симметрично, то их число увеличивается до 48.

Попытался изобразить раскладку цепочек для d=90
Но не получается создать таблицу с помощью встроенного редактора.
Слишком широкие поля, видно.

Тогда давайте попробуем в виде электронной таблицы. По ссылке
https://docs.google.com/spreadsheets/d/ ... sp=sharing

Как минимум, видно, что не выполняется гипотеза об обязательности цепочек до (r-3).
Число 31 входит в таблицу цепочкой (двумя числами). Но 29 осталось одиночным.
---
Да, про смещения:
Строка 7 смещена относительно базового расположения вправо на 2 позиции. (+2)
Строка 11 смещена относительно базового расположения вправо на 6 позиций. (+6)
Строка 13 смещена относительно базового расположения вправо на 8 позиций. (+8)

Строки 17, 19, 23, 31 остались на месте. (0)

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение11.05.2021, 22:46 


01/07/19
244
,
Yury_rsn в сообщении #1518138 писал(а):
Число 31 входит в таблицу цепочкой (двумя числами). Но 29 осталось одиночным.

Вся таинственность интервалов Якобсталя как раз проявляется в этих "цепочках".
Если бы, например, в данном случае число 29 тоже смогло бы каким-то образом втиснуться двумя числами в интервал, то длина d могла бы быть 92 или 94. Но никак не получается, оказывается.

Цепочки с одной стороны увеличивают длину интервала - если удается всем числам попасть в незанятые колонки.
А с другой стороны, они друг другу мешают, накладываются друг на друга.
Интересная загадка!
---
У меня какие-то смутные подозрения :-) , что это похоже на какую-то известную комбинаторную задачу, только не могу вспомнить на какую.
Может что-то из теории графов, или где-то там...

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение12.05.2021, 10:51 


23/02/12
3372
Yury_rsn в сообщении #1518197 писал(а):
У меня какие-то смутные подозрения :-) , что это похоже на какую-то известную комбинаторную задачу, только не могу вспомнить на какую.
Может что-то из теории графов, или где-то там...
Вполне возможно. В рабте Pintz, J. (1997). "Very large gaps between consecutive primes". J. Number Theory. 63 (2): 286–301. doi:10.1006/jnth.1997.2081. используется комбинаторный подход и теория графов для оценки снизу максимального расстояния между соседними простыми числами.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение30.05.2021, 11:06 


01/07/19
244
Dmitriy40 в сообщении #1513456 писал(а):
? pr=vecprod(primes([1,23]));pp=1;forstep(p=3,pr-1,2, if(gcd(p,pr)>1,next); if(p-pp==40,print1(pp," "));pp=p)

20332471 24686821 36068191 65767861 82370089 97689751 125403079 140722741 157324969 187024639 198406009 202760359
time = 1min, 3,868 ms.[/code]Выведено меньшее из двух чисел.

Дмитрий, подскажите, пожалуйста, как надо переписать программу, чтобы искало интервалы в каком-то заданном диапазоне?
Например, надо найти интервалы длиной 40, как здесь, но не на всем протяжении праймориала 23#, а допустим между 13# и 17#. Ну, или между 10млн. и 30млн.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение30.05.2021, 19:49 


01/07/19
244
Dmitriy40
Цитата:
Dmitriy40 в сообщении #1513456 писал(а):
? pr=vecprod(primes([1,23]));pp=1;forstep(p=3,pr-1,2, if(gcd(p,pr)>1,next); if(p-pp==40,print1(pp," "));pp=p)

Дмитрий, подскажите, пожалуйста, как надо переписать программу, чтобы искало интервалы в каком-то заданном диапазоне?
Например, надо найти интервалы длиной 40, как здесь, но не на всем протяжении праймориала 23#, а допустим между 13# и 17#. Ну, или между 10млн. и 30млн.

Вроде уже сам разобрался.
Если надо, чтобы шел поиск в диапазоне от A до B, то запись должна быть такая:
pr=vecprod(primes([1,23]));pp=1;forstep(p=A,B,2, if(gcd(p,pr)>1,next); if(p-pp==40,print1(pp," "));pp=p)

Тогда, если можно, другая просьба - у вас не сохранились образцы других программ, по которым вы считали примеры в этой ветке?
Было бы очень благодарен, если бы вы ими поделились. :-)

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение30.05.2021, 23:33 
Заслуженный участник


20/08/14
11867
Россия, Москва
Yury_rsn в сообщении #1520531 писал(а):
Если надо, чтобы шел поиск в диапазоне от A до B, то запись должна быть такая:
pr=vecprod(primes([1,23]));pp=1;forstep(p=A,B,2, if(gcd(p,pr)>1,next); if(p-pp==40,print1(pp," "));pp=p)
Да. Только не забывайте что A,B должны быть нечётными, чтобы между ними можно было идти с шагом 2. Ну и в pr надо будет другое число подставить если будете считать другие примориалы.

Yury_rsn в сообщении #1520531 писал(а):
Тогда, если можно, другая просьба - у вас не сохранились образцы других программ, по которым вы считали примеры в этой ветке?
Часть сохранилась, часть нет, я писал их все в одном файле, добавляя новые в начало и/или переставляя куски если надо было что-то пересчитать. Но не каждый вариант остался, иногда вместо написания нового проще чуть подправить старый. Ещё часть похожих программ делались путём комментирования части строк и замены их на новые (так что многих вариантов программ в целом виде и нет). Ну и я не сохранял какой кусок что именно считает, обычно это довольно очевидно (во всяком случае мне как автору) прямо по исходнику.
Так что выкладывать весь файлик на 25К текста с 450 строками, в котором десятка полтора программ, треть из которых перемешана между собой, я смысла не вижу. К тому же почти все программы достаточно просты.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 624 ]  На страницу Пред.  1 ... 25, 26, 27, 28, 29, 30, 31 ... 42  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group