2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 11, 12, 13, 14, 15, 16, 17 ... 21  След.
 
 Re: Простые числа и палиндромы
Сообщение25.03.2021, 14:53 


15/11/20
179
Россия, Москва.
Dmitriy40 в сообщении #1511066 писал(а):
Вы не поняли, эти два цикла не делают вообще ничего! От их удаления вообще ничего не изменится.
Много раз переделывал код, вот и ставил много ненужного. Спасибо, посмотрю сравнение с помощью log.txt

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение17.04.2021, 07:16 


15/11/20
179
Россия, Москва.
Dmitriy40
Забыл ответить на Ваш вопрос: "Зачем это всё нужно?"
Вы помогли мне убедиться, что наши формулы работают!
Далее - теперь мы имеем возможность предсказать простой палиндром с помощью простых близнецов.
Этот простой палиндром будет состоять по количеству знаков, как минимум, в квадрате относительно максимально найденных простых близнецов...

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение17.04.2021, 13:09 
Заслуженный участник


20/08/14
11862
Россия, Москва
kazvadim в сообщении #1514679 писал(а):
Далее - теперь мы имеем возможность предсказать простой палиндром с помощью простых близнецов.
Ну-ка, ну-ка, это как? Я ведь приводил выше оценки что никаким предсказанием тут и не пахнет, обычная случайность. Показывайте как можно предсказать палиндром по близнецам, вот по таким: $p \pm 1=\{a;b\}$. Итак, каков будет простой палиндром? Не один неизвестно какой из 8000 или 4000 или 3200 или 9, а конкретно, какой?

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение17.04.2021, 19:07 
Заслуженный участник
Аватара пользователя


23/07/05
17977
Москва
kazvadim в сообщении #1514679 писал(а):
теперь мы имеем возможность предсказать простой палиндром с помощью простых близнецов.
Очень интересно. Можно на примере? Вот Вам две пары простых близнецов: $95126\cdot 3^{2095}\pm 1$ и $1837120\cdot 3^{2093}\pm 1$. Какие конкретно палиндромы по ним можно предсказать?

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение18.04.2021, 06:27 


15/11/20
179
Россия, Москва.
Someone в сообщении #1514800 писал(а):
kazvadim в сообщении #1514679 писал(а):
теперь мы имеем возможность предсказать простой палиндром с помощью простых близнецов.
Очень интересно. Можно на примере? Вот Вам две пары простых близнецов: $95126\cdot 3^{2095}\pm 1$ и $1837120\cdot 3^{2093}\pm 1$. Какие конкретно палиндромы по ним можно предсказать?
Ключевые слова: предсказать по нашим формулам. Берём $95126\cdot 3^{2095}\pm 1$ и $1837120\cdot 3^{2093}\pm 1$ и находим простой палиндром по формулам, которые на 14-ти страницах этой темы исследовались... вычислительное доказательство мы вряд ли получим (средств не хватит), а дать теоретическую подсказку для следующих вычислительных возможностей - это уже помощь с нашей стороны.

-- 18.04.2021, 07:19 --

Теория без предсказаний - это воду в ступе молоть (меня так учили в АН СССР).. если у моей затеи с простыми палиндромами нет предсказаний, то 10 раз извиняюсь = виноват...

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение18.04.2021, 11:07 
Заслуженный участник
Аватара пользователя


23/07/05
17977
Москва
kazvadim в сообщении #1514872 писал(а):
находим простой палиндром по формулам, которые на 14-ти страницах этой темы исследовались
А конкретнее можно? А то и страниц много, и формул всяких у Вас было, кажется, десятки.

Если взять любые числа $A$ и $B$, где запись $B$ заканчивается на $1$, $3$, $7$ или $9$, то всегда можно подобрать такое число $C$, что число $ACB$ будет простым (имеется в виду не произведение, а просто запись подряд). Ясно, что так же можно строить и простые палиндромы. Чем здесь лучше простые близнецы — совершенно не ясно.

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение18.04.2021, 16:17 
Заслуженный участник


20/08/14
11862
Россия, Москва
Someone в сообщении #1514888 писал(а):
А конкретнее можно? А то и страниц много, и формул всяких у Вас было, кажется, десятки.
А без разницы, я если не ошибся, то проверил их практически все и ни одного простого палиндрома из этих близнецов не строится.
Кроме того, выше приводил статистику, что в среднем простой палиндром строится лишь из около 3% комбинаций, что очень незначительно отличается от просто случайного выбора палиндрома, а в некоторых случаях и значительно хуже почти случайного выбора. Потому никакой предсказательной силы вся эта тема пока не имеет. Да, метод построения больших простых чисел (да ещё и палиндромов) красивый, но бесполезный мало полезный.

-- 18.04.2021, 16:19 --

kazvadim в сообщении #1514872 писал(а):
и находим простой палиндром по формулам
И не находим простого палиндрома. Во всяком случае я не нашёл. Может конечно не все формулы проверил, уже не помню их все ...

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение18.04.2021, 17:17 
Заслуженный участник
Аватара пользователя


23/07/05
17977
Москва
Someone в сообщении #1514888 писал(а):
Если взять любые числа $A$ и $B$, где запись $B$ заканчивается на $1$, $3$, $7$ или $9$, то всегда можно подобрать такое число $C$, что число $ACB$ будет простым (имеется в виду не произведение, а просто запись подряд). Ясно, что так же можно строить и простые палиндромы.

Пример. Поищем простые палиндромы вида $9876543210\ldots 0123456789$. Число цифр в простом палиндроме должно быть нечётным.
Попытка вставить в середину одну цифру ничего не даёт, все $10$ кандидатов оказываются составными.
Пробуем комбинации из трёх цифр вида $aba$ (их $100$ штук) и получаем аж $6$ простых палиндромов: $98765432101310123456789$, $98765432103230123456789$, $98765432105450123456789$, $98765432107370123456789$, $98765432108380123456789$, $98765432109190123456789$.

Вообще, в простых числах можно "прятать" какую-нибудь информацию, например, текст или картинку. Я однажды даже участвовал в создании простого числа, десятичная запись которого содержит $100000$ цифр (не помню, точно столько или всё-таки больше), в котором был закодирован некоторый текст (просто информация об участниках). Текст можно прочитать, если распечатать десятичную запись числа по $50$ цифр в строке. Это число, уменьшенное на $1$, имеет $30$ простых делителей по $1000$ цифр каждый, в которых также закодированы некоторые тексты (FACTOR 1, FACTOR 2 и т.д.; прилагаю файл helper-50.txt с этими делителями). Это число, видимо, можно найти в базе сайта Prime Pages по описанию "picture prime", поскольку оно туда выкладывалось, но в данный момент у них что-то не в порядке и поиск не работает.
Число искали в виде $k\cdot D+E$, где $D$ является произведением всех перечисленных в файле множителей, а $E$ в начале содержит требуемый текст, а "хвост" подобран так, чтобы число $E-1$ делилось на $D$. Параметр $k$ я, к сожалению, не сохранил. Подбор $k$ требовал больших вычислений, которые были распределены между всеми участниками. Все эти делители нужны для того, чтобы можно было в обозримое время доказать, что полученное число простое.

Dmitriy40 в сообщении #1514924 писал(а):
А без разницы, я если не ошибся, то проверил их практически все и ни одного простого палиндрома из этих близнецов не строится.
Это меня не удивляет. Чем больше числа, тем реже среди них попадаются простые, и если среди чисел порядка $10^{10}$ простые встречаются часто и на одно из них можно наткнуться после десятка-двух проб, то для чисел порядка $10^{1000}$ этих проб потребуются сотни и тысячи. И совершенно неважно, используем мы простые близнецы или просто случайные последовательности цифр (с необходимыми ограничениями на последнюю цифру, естественно).


Вложения:
helper-50.txt [30.58 Кб]
Скачиваний: 238
 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение18.04.2021, 18:01 
Заслуженный участник


20/08/14
11862
Россия, Москва
Someone
Так и меня не удивляет. А вот товарищ упорно не понимает разницы между перебором множества вариантов с проверкой каждого на простоту и построением гарантированно простого числа. И упорно пытается первое выдать за второе ... :facepalm: Ему даже пока не удалось выделить подкласс натуральных чисел, среди которых простых в среднем заметно больше чем среди всех натуральных с простейшими эвристиками (типа проверять лишь 8 кандидатов из каждых последовательных 30 или лишь палиндромы с младшей 1,3,7,9), по факту получается даже немного меньше (т.е. хуже).

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение19.04.2021, 20:29 


15/11/20
179
Россия, Москва.
Согласен с Someone
Какой бы был смысл тут что-то искать, когда было бы и так всё ясно. Попытка = запрещена?
Dmitriy40
Вы доказали, что вероятность нахождения простого палиндрома низкая, но эта вероятность есть?

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение19.04.2021, 21:53 
Заслуженный участник


20/08/14
11862
Россия, Москва
kazvadim
Вероятность (ненулевая) есть, смысла нет.

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение19.04.2021, 23:22 
Заслуженный участник
Аватара пользователя


23/07/05
17977
Москва
kazvadim в сообщении #1515100 писал(а):
Попытка = запрещена?
Попытка не запрещена, но она должна быть осмысленной. То, что Вы предлагаете делать, используя простые близнецы, точно так же делается и без них, просто со случайными наборами цифр вместо простых близнецов. Я не вижу, чем простые близнецы лучше. Кроме того, как уже писал Dmitriy40, то, что Вы предлагаете, не является гарантированным построением простого палиндрома. Это простой перебор вариантов в надежде, что какой-то даст нужный результат.

Между прочим, наибольший известный в настоящее время простой палиндром равен $10^{474500}+999\cdot 10^{237249}+1$. В его построении простые близнецы явно не использовались: числа $9\cdot 10^{237249}+1$ и $10^{237249}+9$ являются составными. Вот отчёт программы pfgw:
Цитата:
9*10^237249+1 has factors: 173

10^237249+9 is composite: RES64: [31E69F0CF9B3D935] (818.8212s+542.0381s)
Согласно этому отчёту, первое число делится на $173$, а второе не проходит тест Ферма (после неудачного поиска малых делителей программа вычислила $3^{n-1}\pmod{n}$ и обнаружила, что результат не равен $1$).

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение20.04.2021, 00:05 


15/11/20
179
Россия, Москва.
$ C p B q A \overline q B \overline p C $ (где А, В, С = 0...9) и ещё формулы... просто так не сдамся.
Someone
Не претендую я на большой простой палиндром... ищу закономерность.

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение20.04.2021, 01:00 
Заслуженный участник


20/08/14
11862
Россия, Москва
kazvadim в сообщении #1515111 писал(а):
$ C p B q A \overline q B \overline p C $ (где А, В, С = 0...9) и ещё формулы...
Ну и какая комбинация A,B,C даёт простой палиндром для простых близнецов $95126\cdot 3^{2095}\pm 1$? И какая для простых близнецов $1837120\cdot 3^{2093}\pm 1$? И главное как вычислить эти комбинации по самим простым близнецам не перебирая все 266 вариантов допустимых сочетаний A,B,C?

 Профиль  
                  
 
 Re: Простые числа и палиндромы
Сообщение24.04.2021, 01:03 


15/11/20
179
Россия, Москва.
Dmitriy40
Если бы я умел программировать так как Вы, то смог бы ответить на Ваш вопрос.
Понятно, что C=1,3,7,9 за исключением деления на 3. A не равно 0 (а другие цифры опять за исключением деления на 3). Тоже и по поводу B.
Для меня это непосильная задача. Предполагаю, что это вычислить нам не удастся... не хватит вычислительных средств.
Перебирать - это согласен - бессмысленно... а закономерность мы пока не нашли.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 301 ]  На страницу Пред.  1 ... 11, 12, 13, 14, 15, 16, 17 ... 21  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group