2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 11  След.
 
 Re: Совершенный кубоид
Сообщение07.05.2020, 09:15 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Andrey A в сообщении #1459996 писал(а):
Обязательно ли условие «$v$ свободное от квадратов» не знаю...

Конечно не обязательно. Это удобно для нахождения взаимно простых троек $l,m,n$, но в принципе ничто не мешает положить $W=1, v=F_KF_PF_Q$ и формализовать решение подсистемы $(2')$: $$ \left\{\begin{matrix}
 l=& K(P^2+1)(Q^2+1)r\\ 
 m=& Q(K^2+1)(P^2+1)r\\ 
 n=& P(Q^2+1)(K^2+1)r\\ 
 v=& 2KPQ(K^2+1)(P^2+1)(Q^2+1)r^2\\ 
 k=& PQ(K^4-1)(P^2+1)(Q^2+1)r^2\\ 
 q=& KP(K^2+1)(P^2+1)(Q^4-1)r^2\\ 
 p=& QK(K^2+1)(P^4-1)(Q^2+1)r^2
\end{matrix}\right.$$ Как видим, допущение хотя бы одного единичного параметра (любого, тут симметрия) порождает нулевой множитель и действительно ведет к образованию "плоского кирпича". Единственное, что удалось выяснить. Можно выписать и формулы самого кубоида, но они будут верны только если $K,P,Q$ удовлетворяют уравнению $\left ( \dfrac{F_K}{F_Q} \right )^2+\left ( \dfrac{F_K}{F_P} \right )^2=1\ (3)$. Приравняем $\dfrac{F_K}{F_Q}=\dfrac{1}{F_T}, \dfrac{F_K}{F_P}=\dfrac{1}{F_{\frac{T+1}{T-1}}}$. Если $(3)$ разрешимо, такое $T$ найдется обязательно. Получаем $F_Q=F_KF_T,\ F_P=F_KF_{\frac{T+1}{T-1}}.$ Вопрос существования пропорциональных троек $F$: $$\begin{matrix}
F_1 & F_T & F_{\frac{T+1}{T-1}}\\ 
F_KF_1  &  F_KF_T  & F_KF_{\frac{T+1}{T-1}}
\end{matrix}$$
Пропорциональные пары F существуют, что видно из примера Коровьев (начало темы): $\dfrac{F_\frac{16}{15}}{F_2}=\dfrac{F_\frac{25}{12}}{F_\frac{37}{13}}$, и по его же свидетельству тут возможны как минимум $1-$параметрические решения. Почему не может быть троек? Подстановки в формулы решений подсистемы $(2')$ также не выявляют противоречий (мне, по крайней мере, не видно). Просто числа могут быть большие.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.05.2020, 14:58 
Заслуженный участник
Аватара пользователя


18/12/07
762
В разделе "Олимпиадные задачи" была тема. Уравнение для рационального кубоида от Ср май 22, 2013 16:46:39
Но в перечне тем "Олимпиадных задач" на это число я её почему-то я не нашёл. Нашёл через поиск. Так вот, в этой теме было приведено уравнение для полного рационального кубоида:

$$\[
\left( {\frac{{2x}}{{1 - x^2 }}} \right)^2  + \left( {\frac{{2y}}{{1 - y^2 }}} \right)^2  = \left( {\frac{{2z}}{{1 - z^2 }}} \right)^2 
\]$

Показано достаточность этого уравнения для описания всех возможных полных рациональных кубоидов. Уравнение очень сложное и, вероятно,не решабельно. Но оно для полных рациональных кубоидов не единственное.

В теме Эйлеровы кирпичи с мнимым ребром было приведено другое уравнение симметричное от трёх переменных и показано, что с его помощью доказать отсутствие полного кубоида невозможно, а доказать же существование полного рационального кубоида возможно только контрпримером, то есть найти, если получится, перебором.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.05.2020, 16:44 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Коровьев
На эту тему от мая 2013г. уже была ссылка, я ее читал, но очень хорошо что Вы напомнили. Возникают новые соображения, так бы не додумался. Домножим в Вашем уравнении все переменные на $i=\sqrt{-1}$:

$$\[\left( {\frac{{2xi}}{{1 - (xi)^2 }}} \right)^2  + \left( {\frac{{2yi}}{{1 - (yi)^2 }}} \right)^2  = \left( {\frac{{2zi}}{{1 - (zi)^2 }}} \right)^2\]$ Получаем: $-\[\left( {\dfrac{{2x}}{{1 + x^2 }}} \right)^2  - \left( {\dfrac{{2y}}{{1 + y^2 }}} \right)^2  = -\left( {\dfrac{{2z}}{{1 + z^2 }}} \right)^2\]$ или $\dfrac{1}{F_x^2}+\dfrac{1}{F_y^2}=\dfrac{1}{F_z^2}$. То есть $\left ( \dfrac{F_z}{F_x} \right )^2+\left ( \dfrac{F_z}{F_y} \right )^2=1$.

Уравнение-то у нас одно и то же, а кирпичи из него мы строим разные и разными способами. Они не пропорциональны, и мой явно больше (имеется в виду целочисленный, конечно). Выходит, из одного кирпича, если бы он существовал, следовала бы бесконечная серия кирпичей, но следовала бы она не только вверх (на увеличение), но и вниз. И тут материал для доказательства бесконечным спуском, вот только как это формализовать. Хотите попробовать? От меня всё что потребуется.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.05.2020, 20:31 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
P.S. А не надо никакого спуска. Вот Ваше уравнение:

$\left ( \dfrac{2x}{1-x^2} \right )^2+\left ( \dfrac{2y}{1-y^2} \right )^2=\left ( \dfrac{2z}{1-z^2} \right )^2 (1'')$ Домножим все переменные на $i=\sqrt{-1}$, запишем:
$\left ( \dfrac{2x}{1+x^2} \right )^2+\left ( \dfrac{2y}{1+y^2} \right )^2=\left ( \dfrac{2z}{1+z^2} \right )^2 (2'')$
Вычтем почленно $(2'')$ из $(1'')$:

$\left ( \dfrac{(2x)^2}{1-x^4} \right )^2+\left ( \dfrac{(2y)^2}{1-y^4} \right )^2=\left ( \dfrac{(2z)^2}{1-z^4} \right )^2$ и перемножим $(1'')\cdot (2'')$:
$\left ( \dfrac{(2x)^2}{1-x^4} \right )^2+\left ( \dfrac{(2y)^2}{1-y^4} \right )^2+$ $\left ( \dfrac{4xy}{(1-x^2)(1+y^2)} \right )^2+
\left ( \dfrac{4xy}{(1+x^2)(1-y^2)} \right )^2=\left ( \dfrac{(2z)^2}{1-z^4} \right )^2$

Вычтем теперь первый результат из второго:
$$\left ( \dfrac{4xy}{(1-x^2)(1+y^2)} \right )^2+\left ( \dfrac{4xy}{(1+x^2)(1-y^2)} \right )^2=0$$
Если $x,y$ рациональны, то оба уравнения $(1''),(2'')$ могут быть одновременно разрешимы только при $x=0$ или $y=0$. И, поскольку одно есть следствие другого, считаю что с рациональным кубоидом вопрос снят. А вот насчет кирпича с мнимым ребром интересно, там последний результат может пригодиться.
Коровьев, не знаю на сколько Вас убедит это доказательство, но из замкнутого круга Ваше появление меня вывело. Спасибо!

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение09.05.2020, 07:03 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Надо бы выписать еще в своих терминах. Всё же доказательство.
В результате предыдущих манипуляций вопрос существования совершенного кубоида свелся к системе $\left\{\begin{matrix}
m^2+n^2=l^2\\ 
(mn)^2-v^2=k^2\\ 
(nl)^2-v^2=q^2\\ 
(lm)^2-v^2=p^2
\end{matrix}\right\ (2)$, а она в свою очередь — к уравнению $\left ( \dfrac{F_K}{F_Q} \right )^2+\left ( \dfrac{F_K}{F_P} \right )^2=1\ (3)$, поскольку оказалось, что подсистема из трех нижних уравнений системы $(2)$ имеет полное $3-$х параметрическое решение в терминах $K,P,Q$. Перепишем $(3)$ так: $\dfrac{1}{F_Q^2}+\dfrac{1}{F_P^2}=\dfrac{1}{F_K^2}$ и расшифруем $F_$: $\left ( \dfrac{2Q}{Q^2+1} \right )^2+\left ( \dfrac{2P}{P^2+1} \right )^2=\left ( \dfrac{2K}{K^2+1} \right )^2.$ Само по себе это уравнение вряд ли новость, всё-таки задача старая, и всех исследований знать невозможно. Новость в том, что оно "отражается в зазеркалье". Запишем

$\left ( \dfrac{2Q}{Q^2+1} \right )^2+\left ( \dfrac{2P}{P^2+1} \right )^2=\left ( \dfrac{2K}{K^2+1} \right )^2 (3)$ Умножая все три параметра на $i=\sqrt{-1}$, получаем уравнение Коровьева:
$\left ( \dfrac{2Q}{Q^2-1} \right )^2+\left ( \dfrac{2P}{P^2-1} \right )^2=\left ( \dfrac{2K}{K^2-1} \right )^2 (3')$

Если исключить случаи $K,P,Q=1$, которые сразу ведут к "плоскому кубоиду", то оба уравнения оказываются эквивалентны: одно следует из другого и обратно. "Зеркальные" члены уравнений еще тем замечательны, что вычитание и умножение между ними дает одинаковый результат. Вычтем почленно $(3)$ из $(3')$:

$\left ( \dfrac{4Q^2}{Q^4-1} \right )^2+\left ( \dfrac{4P^2}{P^4-1} \right )^2=\left ( \dfrac{4K^2}{K^4-1} \right )^2$ И перемножим левые и правые части $(3)$ и $(3')$:
$\left ( \dfrac{4Q^2}{Q^4-1} \right )^2+\left ( \dfrac{4P^2}{P^4-1} \right )^2$ $+\left ( \dfrac{4PQ}{(P^2+1)(Q^2-1)} \right )^2+\left ( \dfrac{4PQ}{(P^2-1)(Q^2+1)} \right )^2=\left ( \dfrac{4K^2}{K^4-1} \right )^2$

Вычитая теперь первый результат из второго, имеем: $$\left ( \dfrac{4PQ}{(P^2+1)(Q^2-1)} \right )^2+\left ( \dfrac{4PQ}{(P^2-1)(Q^2+1)} \right )^2=0$$
Отсюда следует $P=0$ и/или $Q=0$, третьего не дано. Если бы существовало решение с параметрами $P,Q$ отличными от единиц и нулей, получили бы нулевую сумму двух положительных чисел, что невозможно. Доказано.

Прямоугольного параллелепипеда с целыми (рациональными) ребрами и диагоналями в трехмерном пространстве не существует. К сожалению )

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение09.05.2020, 10:46 
Заслуженный участник
Аватара пользователя


18/12/07
762
Когда-то я писал, что если вы доказали теорему Ферма, то ищите ошибку, и не торопитесь явить миру своё доказательство.
Вы доказали, что уравнения (3) и (3') не имеют общего решения. Но из равенства (3) при каких-то значениях переменных абсолютно не следует равенство (3') при тех же значениях.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение09.05.2020, 12:21 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
А я забил тревогу совсем по другому поводу. Вывод о нулях из выражения $\left ( \dfrac{4PQ}{(P^2+1)(Q^2-1)} \right )^2+\left ( \dfrac{4PQ}{(P^2-1)(Q^2+1)} \right )^2=0$ справедлив не только для рациональных, но и для вещественных. А это как минимум странно. Теперь вижу, что обошелся с уравнением как с тождеством. Но если некоторое решение справедливо для $x$, не значит что оно справедливо для $3x$ )) Позор на мою седую голову. Надо подумать. Ситуация с бесконечной серией, между тем, остается в силе.
Upd Хотя, не факт. Я что-то вообще перестал понимать, какая польза от подстановки $i$.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение12.05.2020, 15:17 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Andrey A в сообщении #1460816 писал(а):
Получаем $F_Q=F_KF_T,\ F_P=F_KF_{\frac{T+1}{T-1}}.$ Вопрос существования пропорциональных троек $F$: $$\begin{matrix}
F_1 & F_T & F_{\frac{T+1}{T-1}}\\ 
F_KF_1  &  F_KF_T  & F_KF_{\frac{T+1}{T-1}}
\end{matrix}$$

Напомню, под $F$ понимается функция $F_T=\dfrac{T^2+1}{2T}$, замена $T \rightarrow \dfrac{T+1}{T-1}$ ведет к $F_{\frac{T+1}{T-1}}=\dfrac{T^2+1}{T^2-1}.$ Под $=\square $ буду иметь в виду равенство квадрату вообще, без конкретизации.

Перепишем выражения $F_Q=F_KF_T,\ F_P=F_KF_{\frac{T+1}{T-1}}$ так: $\left ( \dfrac{(K^2+1)(T^2+1)}{4KT} \right )^2-1=\square ,\ \left ( \dfrac{(K^2+1)(T^2+1)}{2K(T^2-1)} \right )^2-1=\square $ и объединим в систему $$\left\{\begin{matrix}
\left [ (K^2+1)(T^2+1) \right ]^2-(4KT)^2=\square \\ 
\left [ (K^2+1)(T^2+1) \right ]^2-\left [ 2K(T^2-1) \right ]^2=\square 
\end{matrix}\right.(4),$$ которая равносильна уравнению $(3)$. Трудности, возникающие при решении подобных уравнений хорошо выявляются с помощью тождества $$\left [ (K^2+1)(T^2+1) \right ]^2=(4KT)^2+\left [ 2K(T^2-1) \right ]^2+\left [ (K^2-1)(T^2+1) \right ]^2(5).$$
Все слагаемые правой части $(5)$ — квадраты рациональных чисел. Сумма первых двух слагаемых $=\square $ тождественно. Сумма $2$-го и $3$-го слагаемого $=\square $ по предъявлению первого уравнения системы $(4)$. Сумма $1$-го и $3$-го слагаемого $=\square $ по предъявлению второго уравнения системы $(4)$. Иными словами, каждое из уравнений $(4)$ описывает слабый кубоид, а вся система – сильный рациональный кубоид с ребрами $4KT,2K(T^2-1),(K^2-1)(T^2+1)$. Но действительно ли он не пропорционален исходному? Вот и проверим. Из предыдущего: $\dfrac{t}{y}=\dfrac{m}{n}=\dfrac{Q(P^2+1)}{P(Q^2+1)}=\dfrac{F_P}{F_Q}=\dfrac{F_KF_{\frac{T+1}{T-1}}}{F_KF_T}=\dfrac{2T}{T^2-1}$. Отношение оснований первого и второго квадратов правой части $(5)$ — та же пропорция. Этого, в общем, достаточно. И так, ни о каких бесконечных сериях речи не идет, единственное что удалось добавить к уравнению Коровьева — система $(4)$, из которой следует существование рационального кубоида со сторонами $4KT,2K(T^2-1),(K^2-1)(T^2+1)$. Можно ее еще записать так: $$\left\{\begin{matrix}
\left [ (KT+1)^2+(K+T)^2 \right ]\left [ (KT-1)^2+(K-T)^2 \right ]=\square \\ 
\left [ (KT+T)^2+(K-1)^2 \right ]\left [ (KT-T)^2+(K+1)^2 \right ]=\square 
\end{matrix}\right.(4')$$
Но выражения в скобочках не квадраты, это можно доказать.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение21.05.2020, 16:31 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Для первого уравнения системы $(4)$ годится параметризация $$\begin{matrix}
K=\dfrac{(c-1)(c^2+3c+1)}{(c+1)(c^2-3c+1)}\\ 
 \\
T=\dfrac{2c^2+3c+2}{2c^2-3c+2}.
\end{matrix}$$
Имеются варианты. Значит, можно выписать $2$-х параметрическое решение слабого кубоида, но очень уж оно длинное. Если оно к тому же и общее, то сильный кубоид неразрешим. Всё дело в простеньком на вид уравнении $((XY)^2-1)(X^2-Y^2)=\square\ (6)$, с которым сталкиваешься всю дорогу, размышляя над этой задачей. Можно его переписать так $\left ( (XY)^2-1 \right )\left ( \left ( \frac{X}{Y} \right )^2-1 \right )=\square$, или записать в систему $\left\{\begin{matrix}
(P^2-1)(Q^2-1) &=\square \\ 
PQ & =\square
\end{matrix}\right.\ (6')$, из которой решения $(6)$ следуют напрямую: $\sqrt{PQ}=X,\sqrt{\frac{P}{Q}}=Y$. Общее решение первого уравнения системы $(6')$ выражается тождеством $\left ( \left ( \dfrac{L^2+M}{L^2-M} \right )^2-1 \right )\left ( \left ( \dfrac{N^2+M}{N^2-M} \right )^2-1 \right )=\left ( \dfrac{LN}{M} \right )^2$. Чтобы произведение внутренних скобочек $\left ( \dfrac{L^2+M}{L^2-M} \right )\left ( \dfrac{N^2+M}{N^2-M} \right )$ оказалось квадратом, достаточно решить уравнение $$\left ( L^4-M^2 \right )\left ( N^4-M^2 \right )=\square\ (6''').$$ Оно также инвариант $(6)$ (достаточно разделить скобки на $M^2$), ничего нового написать так и не удается. Но в таком виде удается найти $1$-параметрическое решение: $L=\dfrac{3c}{c^2+1}+2,\ N=\dfrac{3c}{c^2+1}-2,\ M=\left ( \dfrac{3c}{c^2+1} \right )^2-2$, откуда и получаем решение слабого кубоида. Заметим, что система $(4)$ похожа на систему из двух уравнений с двумя неизвестными, если забыть, что под квадратами правой части скрываются еще две переменные. Любые попытки её решения на основе полученных формул неизменно приводят к уравнению с одним неизвестным. Решения такого уравнения выражаются не буквами, а конкретными числами. Даже если повезет, и они будут целыми, кубоид окажется уникальным. Такое бывает, но скорее всего оно из чисел $=0$, иначе проект yoyo@home давно бы его засёк. Совсем иная ситуация сложилась бы, если решение $(6''')$ было бы $2$-x параметрическим, такого пока не вижу. Да и есть ли оно?

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение21.05.2020, 17:06 


14/01/11
3037
Andrey A в сообщении #1461004 писал(а):
Вычтем почленно $(2'')$ из $(1'')$:

Это кто вам сказал, что так можно делать? $x,y,z$ в одном из них отнюдь не те же самые, что в другом.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение21.05.2020, 21:31 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Sender в сообщении #1464406 писал(а):
Вычтем почленно $(2'')$ из $(1'')$

Этот пост от 07.05.2020 и три последующих хорошо бы удалить. С позволения Коровьева. Там ошибка, выводов оттуда никаких не берется, зато повод поговорить.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение23.05.2020, 07:48 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Andrey A в сообщении #1464393 писал(а):
Любые попытки её решения на основе полученных формул неизменно приводят к уравнению с одним неизвестным.

Это слишком категорично. Можно ведь и в лоб – выразить предполагаемые квадраты правой части системы $(4)$ через параметр $c$

$\left\{\begin{matrix}
... = \left ( \frac{8c(2c^4-2c^2+5)(5c^4-2c^2+2)}{(c+1)^2(c^2-3c+1)^2(2c^2-3c+2)^2} \right )^2\\ 
 \\
... =\frac{16(c^2+1)^2(4c^8-12c^7+13c^6+96c^5-9c^4-96c^3+13c^2+12c+4)(4c^8+12c^7+13c^6-96c^5-9c^4+96c^3+13c^2-12c+4)}{(c+1)^4(c^2-3c+1)^4(2c^2-3c+2)^4} 
\end{matrix}\right.$

и задаться вопросом: при каких значениях $c$ неквадратная часть второй строки окажется квадратом. Её можно переписать так:

$(4c^8-12c^7+13c^6+96c^5-9c^4-96c^3+13c^2+12c+4)$ $(4c^8+12c^7+13c^6-96c^5-9c^4+96c^3+13c^2-12c+4)=$

$\left ( 4c^8+13c^6-9c^4+13c^2+4 \right )^2-\left ( 12c^7-96c^5+96c^3-12c \right )^2=$ $\left ( (c^2+4)(4c^2+1)(c^4-c^2+1) \right )^2-$ $\left ( 12c(c-1)(c+1)(c^2-3c+1)(c^2+3c+1) \right )^2=\square.$

Или же так: $$(c^2+4)(4c^2+1)(c^4-c^2+1)b=6c(c^2-1)(c^2-3c+1)(c^2+3c+1)(b^2+1)\ (7)$$
Вот и второй параметр. Не такое уж безнадежное уравнение на вид, не страшнее чем у Руслана Шарипова. Однако, в пределах возможностей Excel решений нет, кроме $c=0,c=1.$

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение23.05.2020, 10:54 


21/05/16
4292
Аделаида
Может, к этому уравнению можно применить методы из http://arxiv.org/abs/1002.4344?

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение23.05.2020, 13:40 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
kotenok gav
Скорее тут внешнее сходство, но дочитаю, интересно. И поучительно, даже Матиясевич упомянут.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение26.05.2020, 23:25 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Andrey A в сообщении #1464685 писал(а):
... внешнее сходство

Имел в виду равенства с большим количеством скобок. Если же речь о верхнем пределе вычислений, это существенно, конечно. Отыскать его, однако, не берусь. На самом деле оно актуально в случае полного решения; тогда, достигнув предела, имеем хотя бы отрицательный результат, а так это из пушки по воробьям: $1$-параметрических решений $(6)$ как минимум несколько, но последнего никто не видел.
Тут еще несколько уравнений подобных $(7)$, включая само. Решив любое из них (хотя бы численно) и подставив решение в соответствующие "слабые" параметры $K,T$, обращаем тождество $(5)$ в решение сильного кубоида. Напомню: $$\left [ (K^2+1)(T^2+1) \right ]^2=(4KT)^2+\left [ 2K(T^2-1) \right ]^2+\left [ (K^2-1)(T^2+1) \right ]^2(5).$$


$K_1=\dfrac{2a^2+3a+2}{2a^2-3a+2},\ T_1=\dfrac{(a+1)(a^2-3a+1)}{(a-1)(a^2+3a+1)}.$
Уравнение 7.1
$\left [ (a^2+1)(a^2+4)(4a^2+1)(a^4-a^2+1)  \right ]^2-$ $\left [ 2a(a^2-2)(2a^2-1)(2a^2-3a+2)(2a^2+3a+2) \right ]^2=\square. $


$K_2=\dfrac{2a^2+3a+2}{2a^2-3a+2},\ T_2=\dfrac{(a^2-2)(4a^2+1)}{(a^2+4)(2a^2-1)}.$
Уравнение 7.2
$\left [ (a^2+4)(4a^2+1)(2a^4-2a^2+5)(5a^4-2a^2+2)  \right ]^2-$ $\left [ 6(a^4-1)(a^2-3a+1)(a^2+3a+1)(2a^2-3a+2)(2a^2+3a+2) \right ]^2=\square. $


$K_3=\dfrac{(a-1)(a^2+3a+1)}{(a+1)(a^2-3a+1)},\ T_3=\dfrac{2a^2-3a+2}{2a^2+3a+2}.$
Уравнение 7.3
$\left [ (a^2+4)(4 a^2+1)(a^4-a^2+1)  \right ]^2-$ $\left [ 12a(a^2-1)(a^2-3a+1)(a^2+3a+1) \right ]^2=\square. $


$K_4=\dfrac{(a-1)(a^2+3a+1)}{(a+1)(a^2-3a+1)},\ T_4=\dfrac{3(a^4-a^2+1)}{(a^2+1)^2}.$
Уравнение 7.4
$\left [ (a^2+1)(a^4-a^2+1)(2a^4-2a^2+5)(5a^4-2a^2+2)  \right ]^2-$ $\left [ (a^2-1)(a^2-2)(2a^2-1)(a^2-3a+1)(a^2+3 a+1)(2a^2-3a+2)(2a^2+3a+2) \right ]^2$ $=\square. $


$K_5=\dfrac{7b^2+1}{b^2+7},\ T_5=\dfrac{b(b^2-5)}{5b^2-1}.$
Уравнение 7.5
$\left [ (b^2+1)(5b^2-6b+5)(5b^2+6b+5)(b^4+14b^2+1)  \right ]^2-$ $\left [ (b^2-1)(b^2-6b+1)(b^2+6b+1)(b^2+7)(7b^2+1) \right ]^2=\square. $


$K_6=\dfrac{7b^2+1}{b^2+7},\ T_6=\dfrac{(b^2+6b+1)(5b^2-6b+5)}{(b^2-6b+1)(5b^2+6b+5)}.$
Уравнение 7.6
$\left [ (5b^2-6b+5)(5b^2+6b+5)(5b^4-12b^3+46b^2-12b+5)(5b^4+12b^3+46b^2+12b+5)  \right ]^2-$ $\left [ 48b(b^2+1)(b^2-5)(5b^2-1)(b^2+7)(7b^2+1) \right ]^2=\square. $


$K_7=\dfrac{b(b^2-5)}{5b^2-1},\ T_7=\dfrac{7b^2+1}{b^2+7}.$
Уравнение 7.7
$\left [ (5b^2-6b+5)(5b^2+6b+5)(b^4+14b^2+1)  \right ]^2-$ $\left [ 48b(b^2-1)(5b^2-1)(b^2-5) \right ]^2=\square. $


$K_8=\dfrac{b(b^2-5)}{5b^2-1},\ T_8=\dfrac{4(b^2+1)^2}{3(b^4+14b^2+1)}.$
Уравнение 7.8
$\left [ (b^2+1)(b^4+14b^2+1)(5b^4-12b^3+46b^2-12b+5)(5b^4+12b^3+46b^2+12b+5)  \right ]^2-$ $\left [ 2b(b^2-5)(5b^2-1)(b^2-6b+1)(b^2+6b+1)(b^2+7)(7b^2+1) \right ]^2=\square. $

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 153 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 11  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group