2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 33, 34, 35, 36, 37, 38, 39 ... 44  След.
 
 Re: Гипотеза Римана
Сообщение03.05.2019, 14:36 


23/02/12
3372
Skipper в сообщении #1390586 писал(а):
а уже май 2019, за год ничего и не изменилось? За год ничего нового не насчитали?
Ничего удивительного, для этого нужны новые идеи, а их пока нет.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.05.2019, 18:18 


07/05/19
56
Интересно, а кто-нибудь задавал вопрос, почему дзета-функция Римана имеет нетривиальные нули?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение07.05.2019, 19:54 


07/05/19
56
Skipper в сообщении #1343201 писал(а):
А по той же причине, функция дзета от $(0.6  + it) $ - не содержит нулей, в отличии от функции дзета от $(0.5  + it) $ .
У неё нет на это каких-то причин, попадать в точку $0$ .

Очень правильный ход мысли, именно нет причин и искать необходимо именно причины, почему при $\sigma \ne 1/2$ дзета-функция Римана не имеет нетривиальных нулей.
Этому есть достаточно простое объяснение, выходящее за рамки аналитической теории чисел и комплексного анализа.
Харди и Литлвуд в своей работе The Zeros of Riemann’s Zeta Function on the Critical Line зарезервировали доказательство леммы 14 ("approximate functional equation"): $$\zeta(s)=\sum_{n\le x}{\frac{1}{n^s}}+\chi(s)\sum_{n\le y}{\frac{1}{n^{1-s}}}+\mathcal{O}(x^{-\sigma})+\mathcal{O}(|t|^{1/2-\sigma}y^{\sigma-1}); $$
$$0<\sigma <1; 2\pi xy=|t| $$ Зигель опубликовал аналогичное уравнение, которое вывел Риман: $$\zeta(s)=\sum_{l=1}^{m}{l^{-s}}+\frac{(2\pi)^s}{2\Gamma(s)\cos(\large\frac{\pi s}{2})}\sum_{l=1}^{m}{l^{s-1}}+(-1)^{m-1}\frac{(2\pi) ^{\large\frac{s+1}{2}}}{\Gamma(s)}t^{\large\frac{s-1}{2}}e^{\large \frac{\pi is}{2}-\large \frac{ti}{2}-\large \frac{\pi i}{8}}\mathcal{S};$$ $$\mathcal{S}=\sum_{0\le 2r\le k\le n-1}{\frac{2^{-k}i^{r-k}k!}{r!(k-2r)!}a_kF^{(k-2r)}(\delta)}+\mathcal{O}\Big(\big(\frac{3n}{t}\big)^{\frac{n}{6}}\Big);$$
$$n\le 2\cdot 10^{-8}t, m=\Big[\sqrt{\frac{t}{2\pi}}\Big], \delta=\sqrt{t}-(m+\frac{1}{2})\sqrt{2\pi}, F(u) =\frac{\cos{(u^2+\frac{3\pi}{8})}}{\cos{(\sqrt{2\pi}u)}}$$
Легко заметить, что у Римана это уравнение обладает симметрией, т.к. обе суммы содержат $m$ слагаемых.
Теперь выйдем за рамки методов аналитической теории чисел и представим каждое слагаемое вектором, для этого достаточно записать комлексное число в показательной или тригонометрической форме.
(при желании могу привести формулы, они очень громоздкие, поэтому я их пока не привожу)
В результате стенет видно, что при $\sigma = 1/2$ вектора образуют вместе с остаточным членом симметричную систему (можно показать, что $|\chi(s)|=1$ и остаточный член перпендикулярен оси симметрии), а при $\sigma \ne 1/2$ эти же вектора образуют конформную симметричную систему, т.к. $|\chi(s)| \ne 1$ и нарушается симметрия отрезков, но сохраняется симметрия углов, далее можно показать, что даже не смотря на незначительное отклонение остаточного члена от нормали к оси симметрии, эта система векторов не может образовывать многоугольник, а как известно сумма векторов равна нулю только если вектора образуют замкнутую ломанную линию, т.е. многоугольник.
В то время как при $\sigma = 1/2$ эти вектора могут образовывать многоугольник причем симметричный со всеми вытекающими последствиями.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение08.05.2019, 15:03 


23/02/12
3372
Лемма была доказана Харди и Литтлвудом в общем случае. Вы берёте частный и говорите, что этим методом может быть ее можно доказать в данном частном случае. Что Вы хотели этим сказать?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение08.05.2019, 17:33 


07/05/19
56
vicvolf в сообщении #1391685 писал(а):
Лемма была доказана Харди и Литтлвудом в общем случае. Вы берёте частный и говорите, что этим методом может быть ее можно доказать в данном частном случае. Что Вы хотели этим сказать?

Не совсем понимаю про какой частный случай идет речь про $\sigma = 1/2$ или про $x=y$? Теорема доказана для диапазона $0<\sigma <1$ и для $x \ge y$ (у Титчмарша теорема 4.15, издание на английском языке 1988), кроме того, там же теорема 4.16 доказательство формулы Римана для $m=\Big[\sqrt{\frac{t}{2\pi}}\Big]$.
Ничего доказывать не надо, теорема доказана для критической полосы $0<\sigma <1$, я предлагаю только рассмотреть вектора, которые соответствуют слагаемым этого уравнения, и выполнить анализ этой системы векторов, которые дадут ноль только в случае многоугольника, т.е. замкнутой ломаной линии.
Мне кажется, логично использовать это свойство векторов, чтобы понять, почему дзета-функция Римана имеет нули (ровно как и не имеет).

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение08.05.2019, 20:56 


07/05/19
56
О, да, я понял, когда посмотрел свои записи, конечно, Вы имели в виду, что промежутков $[2\pi m^2;2\pi (m+1)^2)$ бесконечное число, но можно показать, что на каждом из них условие образования многоугольника при $\sigma \ne 1/2$ не выполняется.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение08.05.2019, 22:03 


23/02/12
3372
kkapitonets в сообщении #1391792 писал(а):
О, да, я понял, когда посмотрел свои записи, конечно, Вы имели в виду, что промежутков $[2\pi m^2;2\pi (m+1)^2)$ бесконечное число, но можно показать, что на каждом из них условие образования многоугольника при $\sigma \ne 1/2$ не выполняется.
Идею Вашего доказательства ГР я понял. Однако идеи не достаточно. Обычно ошибки в доказательстве.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение27.05.2019, 05:53 


26/12/18
155
какой будет оценка следующей переводной статьи?
https://habr.com/ru/post/452964/

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение27.05.2019, 07:31 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
Sycamore в сообщении #1395576 писал(а):
какой будет оценка

Научно-популярная статья. Ряд опечаток вызовет недоумение. Тут и правда, Дербшира лучше прочесть:))

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение27.05.2019, 10:15 


07/05/19
56
Пожалуй, самое главное в этой статье:

"Посвящается памяти Джона Форбса Нэша-младшего"

PS в WiKi есть заметка.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение27.05.2019, 17:13 


26/12/18
155
Дербшира читал давным-давно, далеко до перевода на русском и безусловно многое забыл :)

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение28.05.2019, 15:36 


26/12/18
155
что будет с аппроксимацией плотности простых, если нули дзеты начнут встревать в сторону от вертикали 1/2?

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение29.05.2019, 14:21 


23/02/12
3372
Sycamore в сообщении #1395928 писал(а):
что будет с аппроксимацией плотности простых, если нули дзеты начнут встревать в сторону от вертикали 1/2?
Гипотеза Римана (ГР) эквивалентна формулировке об асимптотической оценке отклонения количества простых чисел, не превосходящих значение $x$ - $\pi(x)$ от интегрального логарифма $Li(x)$: $\pi(x)-Li(x)=O(x^{1/2} logx)$. Для плотности простых чисел $p(x)=\pi(x)/x$ данная оценка запишется в виде: $p(x)-Li(x)/x=O(x^{-1/2}logx)$. Так вот, если ГР не будет выполняться, то оценка данного отклонения изменится.

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение29.05.2019, 16:16 


26/12/18
155
... может, в лучшую сторону? :)

 Профиль  
                  
 
 Re: Гипотеза Римана
Сообщение29.05.2019, 16:32 


13/11/15
31
Если не ошибаюсь, из отсутствия нулей с $\sigma>c$ следует оценка $\pi(x)-Li(x)=O(x^{c+\varepsilon})$ для любого $\varepsilon>0$. При этом из наличия нуля с $\sigma=c$ вытекает, что оценка $\pi(x)-Li(x)=O(x^c)$ неверна.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 655 ]  На страницу Пред.  1 ... 33, 34, 35, 36, 37, 38, 39 ... 44  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group