2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 35  След.
 
 
Сообщение23.07.2008, 13:17 
Заслуженный участник


09/05/08
1155
Новосибирск
Как мне кажется, предел тут "при чем". Более того, в нем вся соль "парадокса". На этот счет я свою точку зрения уже обрисовал. Формально функция $A(t)$ в точке $t_0$ не определена, и при ее доопределении мы решаем, непрерывность чего и в каком смысле нам более желанна, и тут уж ничего кроме туманной "естественности" в аргументы не пригласить. Какой-нибудь "извращенец" может возжелать непрерывности, скажем, функции $A(t)\ominus\min A(t)$, где $X\ominus y:=\{x-y : x\in X\}\cap{\mathbb N}$. Кстати, вот вам и пример "извращенного" определения предела: $X_n\overset{*}{\to} X\ \Leftrightarrow\ (X_n\ominus\min{X_n})\to (X\ominus\min X)$. И тогда в нашей игре будет $A(t_0)={\mathbb N}$. :)

 Профиль  
                  
 
 
Сообщение23.07.2008, 13:30 
Заслуженный участник
Аватара пользователя


23/08/07
5487
Нов-ск
ewert писал(а):
Сам-то полдень имеет. Не имеет смысла сочетание "в полдень". Пока мы его не определили.
Странно. Тогда сочетание "в ящик" тоже надо определять. Тяжелая жизнь наступит.

 Профиль  
                  
 
 
Сообщение23.07.2008, 13:34 
Заслуженный участник


11/05/08
32166
TOTAL писал(а):
Тогда сочетание "в ящик" тоже надо определять. Тяжелая жизнь наступит.

Нет, тогда как раз всё будет легко, ибо никакой жизни уже не будет.

----------------------------------------------------------------
Всё, я прекращаю флуд (ну или по крайней мере попытаюсь).

 Профиль  
                  
 
 
Сообщение23.07.2008, 13:42 
Аватара пользователя


17/06/06
36
Odessa
ewert писал(а):
surfer писал(а):
ewert писал(а):
даже мера (длина там, площадь, объём и т.д.) предела множеств не обязана быть равной мере предельного множества. Примеры тривиальны.
Можно примерчик?

Пожалуйста. На множестве $\mathbb R$ определим последовательность подмножеств $A_n=[n;\;2n]$. Их длины $\mu(A_n)=n\longrightarrow+\infty$, в то время как сами $A_n\longrightarrow\varnothing$.

Полный аналог примера Литтлвуда.

Полный аналог это $A_n=[n+1;\;10n]$. Я думал у вас в кармане прячутся примеры других видов. Я хотел поразмыслить над парадоксами которые такие примеры могут породить.

Вот, например, аналог уже звучавшего в обсуждении примера:
$A_n=[n;\infty)$.
Ей бы тоже соответствовал парадокс - только в ящике уже лежат пронумерованные шары, соответствующие всем числам из натурального ряда, их тем же способом можно вынимать, как в задаче Литтлвуда. И в полдень шаров в ящике не останется.

 Профиль  
                  
 
 
Сообщение23.07.2008, 13:55 
Заслуженный участник


11/05/08
32166
surfer писал(а):
Вот, например, аналог уже звучавшего в обсуждении примера:
$A_n=[n;\infty)$.
Ей бы тоже соответствовал парадокс - только в ящике уже лежат пронумерованные шары, соответствующие всем числам из натурального ряда, их тем же способом можно вынимать, как в задаче Литтлвуда. И в полдень шаров в ящике не останется.

Парадокс, в отличие от противоречия (если их различать) -- это нечто неожиданное или непривычное. В этом примере никакой неожиданности нет. Множества убывают (в точном смысле, т.е. вложены друг в друга); ну и почему бы им и не исчезнуть?

 Профиль  
                  
 
 
Сообщение23.07.2008, 13:59 
Аватара пользователя


17/06/06
36
Odessa
ewert писал(а):
surfer писал(а):
Вот, например, аналог уже звучавшего в обсуждении примера:
$A_n=[n;\infty)$.
Ей бы тоже соответствовал парадокс - только в ящике уже лежат пронумерованные шары, соответствующие всем числам из натурального ряда, их тем же способом можно вынимать, как в задаче Литтлвуда. И в полдень шаров в ящике не останется.

Парадокс, в отличие от противоречия (если их различать) -- это нечто неожиданное или непривычное. В этом примере никакой неожиданности нет. Множества убывают (в точном смысле, т.е. вложены друг в друга); ну и почему бы им и не исчезнуть?

Отнюдь, множества ни капельки не убывают, если вообще корректно говорить об убывании, а остаются бесконечной меры.

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:00 
Супермодератор
Аватара пользователя


29/07/05
8248
Москва
Последовательность множеств $A_1,A_2,\ldots$ называется убывающей, если $A_1\supset A_2\supset\ldots$.

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:03 
Заслуженный участник


11/05/08
32166
surfer писал(а):
Отнюдь, множества ни капельки не убывают, если вообще корректно говорить об убывании, а остаются бесконечной меры.

Формально: последовательность множеств $\{A_n\}$ называется убывающей, если

$A_1\supset A_2\supset A_3\supset \dots\;.$

Что вполне согласуется со здравым смыслом.

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:03 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
ewert
Те же сомнения мучали меня несколько месяцев назад, когда тема только началась. Мне объяснили, что нужно понимать под состоянием в полдень liminf или limsup множеств шариков в предшествующие полудню моменты времвни. На мой жалкий писк, что таковое в условиях задачи отсуствует, так что это додумывать нужно, меня затоптали на предмет того, что и так все ясно. Поскольку я не спорщица, возникать не стала, но оскомина осталась.

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:10 
Супермодератор
Аватара пользователя


29/07/05
8248
Москва
shwedka, я же уже приводил объяснение на этот счет ...
:cry:

Вы согласны, что из условий задачи состояние каждого шара в полдень однозначно определено безо всяких доопределений и додумываний?

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:15 
Заслуженный участник


11/05/08
32166
shwedka писал(а):
ewert
Те же сомнения мучали меня несколько месяцев назад, когда тема только началась. Мне объяснили, что нужно понимать под состоянием в полдень liminf или limsup множеств шариков в предшествующие полудню моменты времвни. На мой жалкий писк, что таковое в условиях задачи отсуствует, так что это додумывать нужно, меня затоптали на предмет того, что и так все ясно. Поскольку я не спорщица, возникать не стала, но оскомина осталась.

Да, но дело в том, что пустота предела множеств -- вещь действительно достаточно естественная, т.к сводится к пустоте верхнего предела. А это как раз и означает, что каждый элемент рано или поздно вылетает из рассмотрения и больше уже ни в какое из множеств никогда не вернётся. В точности в соответствии с построением Литтлвуда.

Что же до писков и пр. топота -- это часто бывает. Достаточно лишь не сойтись в терминологии.

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:18 
Заслуженный участник
Аватара пользователя


23/08/07
5487
Нов-ск
PAV писал(а):
shwedka, я же уже приводил объяснение на этот счет ...
:cry:

Вы согласны, что из условий задачи состояние каждого шара в полдень однозначно определено безо всяких доопределений и додумываний?

Начинаю подозревать, что Литлвуд - тролль, а shwedka ему помогает. :shock:

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:18 
Аватара пользователя


17/06/06
36
Odessa
ewert писал(а):
surfer писал(а):
Отнюдь, множества ни капельки не убывают, если вообще корректно говорить об убывании, а остаются бесконечной меры.

Формально: последовательность множеств $\{A_n\}$ называется убывающей, если

$A_1\supset A_2\supset A_3\supset \dots\;.$

Что вполне согласуется со здравым смыслом.


Согласен, это вполне здравое определение последовательностей убывающих множеств.

ewert писал(а):
surfer писал(а):
Вот, например, аналог уже звучавшего в обсуждении примера:
$A_n=[n;\infty)$.
Ей бы тоже соответствовал парадокс - только в ящике уже лежат пронумерованные шары, соответствующие всем числам из натурального ряда, их тем же способом можно вынимать, как в задаче Литтлвуда. И в полдень шаров в ящике не останется.

Парадокс, в отличие от противоречия (если их различать) -- это нечто неожиданное или непривычное. В этом примере никакой неожиданности нет. Множества убывают (в точном смысле, т.е. вложены друг в друга); ну и почему бы им и не исчезнуть?


Для меня неожиданность в том что процесс формирования натурального ряда, определяемый как добавление еще одного элемента к последнему известному числу, что по своей сути "необгоняемый" процесс, в процессе Литтвуда мы "обгоняем" и выбираем весь натуральный ряд полностью и "без остатка" не обращая внимания на то что сам натуральный ряд был раннее определен как нечто неисчерпаемое.

 Профиль  
                  
 
 
Сообщение23.07.2008, 14:31 
Заслуженный участник


11/05/08
32166
TOTAL писал(а):
Начинаю подозревать, что Литлвуд - тролль, а shwedka ему помогает. :shock:

Пора банить Литтлвуда.

Кстати, а где он, никто не в курсе? Чего-то давненько тут не появлялся.

 Профиль  
                  
 
 
Сообщение23.07.2008, 15:04 
Аватара пользователя


22/07/08
1416
Предместья
ewert в сообщении #135021 писал(а):
Пора банить Литтлвуда.

Кстати, а где он, никто не в курсе? Чего-то давненько тут не появлялся.

Известно где!
В ящике! В полдень и по-полудни!
И в этом опровержение парадокса!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 522 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 35  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group