Someone писал(а):
shwedka писал(а):
Someone
Гордитесь, Вас уже в соавторы записали.
Неужели это так заразно???
Это не первый раз. Я уже устал отказываться. Я считаю свой вклад в это "доказательство" слишком незначительным, чтобы претендовать на соавторство или даже просто на упоминание в списке благодарностей.
Ну хорошо - не соавторов: мне это тоже до фени. Но ведь если кто-то другой, а не я, решит поставленную задачу, не могу же я присвоить себе чужой результат! И потом, я употребляю слово соавторство не в смысле распределения почестей (кстати у меня отсутствующих), а лишь в смысле СОТРУДНИЧЕСТВА. Чего же тут может быть обидного?..
+++++++++++++++++++++++++++++++++++++++++++++++++
Второй кандидат на противоречивую пару по простому делителю

:

и

; или

[

] и

.
Но пока хрен редьки не слаще…
Поиск продолжается.
+++++++++++++++++++++++++++++++++++++++++++++++++
Позднее дополнение:
Существенное упрощение задачи: самый удобный (для доказательства противоречия) генератор простых

, являющихся делителями чисел

, или:

, или

, или

, или

.
Второе число в противоречивой паре:

.
Представляется, что теперь доказательство противоречия - уже вполне посильная задача.