2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5, 6  След.
 
 ОТО: с чего начать
Сообщение06.07.2008, 11:05 


06/07/08
3
Здравствуйте,
некоторое время назад я понял, что хотел бы для повышения собственной образованности познакомиться с теорией относительности (сам я недавно закончил факультет прикладной математики технического вуза) - поэтому решил обратиться на этот форум:
подскажите, пожалуйста, хорошую литературу по теории относительности Эйнштейна, где присутствовало бы как безупречное с точки зрения физики, так и с позиции математики изложение теории относительности. Т.е. хотелось бы, чтобы было не просто сухое нагромождение формул, но содержалось бы много комментариев о физической сущности излагаемого материала. (желательно также, чтобы краткое изложение тензорного анализа в книге также было - а то я его проходил года 3 назад - уже из памяти многое повылетало с тех пор :roll: ). Спасибо.

 Профиль  
                  
 
 
Сообщение06.07.2008, 14:02 
Заслуженный участник
Аватара пользователя


20/05/06
668
куда, зачем, почему?
Zyablik
Посмотрите эту ссылку.
http://theorphys.mipt.ru/courses/geomm.html

Там есть лекция 0 , в ней должны быть изложенны книги, с которых стоит начинать. :wink:

 Профиль  
                  
 
 
Сообщение06.07.2008, 14:52 


06/07/08
3
Хет Зиф писал(а):
Zyablik
Посмотрите эту ссылку.
http://theorphys.mipt.ru/courses/geomm.html

Там есть лекция 0 , в ней должны быть изложенны книги, с которых стоит начинать. :wink:

Спасибо, попробую с Дирака начать :)

 Профиль  
                  
 
 
Сообщение07.07.2008, 02:13 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Там МТУ (ссылка [7]) отодвинули в дополнительные по полиграфическим причинам: "Рекомендовать эту книгу я не берусь, так как старое издание труднодоступно, новое напечатано в отвратительном "слепом" виде, а книга большого объёма и стоит соответственно (новое издание я видел за 600 руб., а старое за 1800 руб)."

Однако сейчас эта книга доступна в электронном виде, и я полагаю, всё-таки заслуживает внимания как одна из самых подробных и доходчивых. По моему мнению, превосходит и Ландау-Лифшица [3], и Паули [5], и Вайнберга. Для меня она была третьей, и я жалею, что не первой.

 Профиль  
                  
 
 
Сообщение07.07.2008, 10:42 
Заслуженный участник
Аватара пользователя


20/05/06
668
куда, зачем, почему?
Munin
Да, да я знаю эту книгу, мне она тоже очень нравится. Все очень доступно с илюстрациями изложенно ! :wink:

 Профиль  
                  
 
 Re: ОТО: с чего начать
Сообщение07.07.2008, 18:19 
Аватара пользователя


25/08/07

572
с Уралу
Zyablik писал(а):
Здравствуйте,
некоторое время назад я понял, что хотел бы для повышения собственной образованности познакомиться с теорией относительности (сам я недавно закончил факультет прикладной математики технического вуза) - поэтому решил обратиться на этот форум:
подскажите, пожалуйста, хорошую литературу по теории относительности Эйнштейна, где присутствовало бы как безупречное с точки зрения физики, так и с позиции математики изложение теории относительности. Т.е. хотелось бы, чтобы было не просто сухое нагромождение формул, но содержалось бы много комментариев о физической сущности излагаемого материала. (желательно также, чтобы краткое изложение тензорного анализа в книге также было - а то я его проходил года 3 назад - уже из памяти многое повылетало с тех пор :roll: ). Спасибо.


Самое последовательное, изложение в Ландвшице т.2 "Теория поля" без соплей и картинок... Не стоит увлекаться книжками с картинками...

Начинать надо с СТО, то тут есть маленькая тонкость. Исторически и Эйнштейн и его предшественники развивали теорию в паре с электродинамикой... Поэтому изложение двух предметов за редким исключением проводится параллельно.. либо в курсах электродинамики.
Пановский-Фипс (очень неплохая книга среднего уровня, но некоторые вещи там изложены великолепно)
Зоммерфельд
Джексон (электродинамика №1 на западе)
Матвеев две книги (электродинамика и теория относительности ..)
или в курсах Тории относительности:
Паули, Тоннелла

Очень хорошо пишет Эйнштейен... Сие можно найти в сети...

Выбор зависит от вас и Вашей подготовке...насколько ваша прикладная "математика"... если нет проблем с линейной алгеброй дальше проблем не будет... .

 Профиль  
                  
 
 
Сообщение07.07.2008, 19:57 
Аватара пользователя


03/03/08
160
из прошлого
Одной линейки маловато будет.

Нужно быстро войти в тензорный анализ, например, а далее сам старикашка Эйнштейн по сборникам.

Цитата:
где присутствовало бы как безупречное с точки зрения физики, так и с позиции математики изложение теории относительности

А такой нет :lol:
Физика лучше всех у старикана и изложена.

 Профиль  
                  
 
 
Сообщение11.07.2008, 20:20 


19/07/05
243
по поводу Гравитации Мизнера вопрос: я знаю, что есть два издания одно старое - конец 70-х, другое - в 90-х. По цене раз так в пять отличаются. Отсюда вопрос: неужели так паршиво издан трехтомник в 90-е? Или это букинистические заморочки так на цене сказываются, а на самом деле качество издания 90-х все же удобоваримое?

 Профиль  
                  
 
 
Сообщение11.07.2008, 23:07 
Заслуженный участник
Аватара пользователя


30/01/06
72407
_serge
Вообще-то даже не в тензорный анализ, а в риманову дифференциальную геометрию. Постников либо что попроще. Идеи ОТО + тензорный анализ, но без полноценного дифгема = непонимание, осложнённое непониманием наличия непонимания.

Насчёт "Физика лучше всех у старикана и изложена." - увы, увы. Второй расцвет ОТО пришёлся на 60-е годы, когда его уже не было. А именно тогда были просто и чётко разъяснены многие физические вопросы. Это физики поколения Пенроуза, Хокинга, Уилера, Торна, Фейнмана, ДеВитта.

Zo
Zo писал(а):
Отсюда вопрос: неужели так паршиво издан трехтомник в 90-е?

Не знаю, электронная версия сосканирована с первого издания. И есть электронная версия оригинала, если хотите :-)

Добавлено спустя 44 минуты 11 секунд:

P. S. Предпочитаю перечислять авторов трёхтомника полностью: все трое весьма заслуженные физики, и явного лидера среди них не вижу. Это не тандем Ландау-Лифшиц.

 Профиль  
                  
 
 
Сообщение12.07.2008, 19:45 
Аватара пользователя


25/08/07

572
с Уралу
Цитата:
Физика лучше всех у старикана и изложена.


и к тому же очень внятным стилем...

 Профиль  
                  
 
 
Сообщение14.07.2008, 21:34 


06/07/08
3
Возник такой вопрос - по ОТО еще ведутся теоретические исследования или все важные и существенные результаты уже давным-давно получены и проверены, а все остальное (что, например, здесь на форуме присутствует) не более чем пережевывание материала и ничего нового из себя не представляющее, кроме ошибок тех людей, которые городят огород по-своему?
И еще правильно ли я понял, что есть два способа получения уравнений Эйнштейна: 1) из принципа наименьшего действия 2) из принципа общей ковариантности, по которому осуществляется подгон уравнений под такой вид, чтобы они в приближении Ньютоновском давали уравнение Пуассона? (Прошу ногами не пинать - я тока-тока приближаюсь к концу книжечки Дирака :roll: )

 Профиль  
                  
 
 
Сообщение14.07.2008, 22:24 
Заслуженный участник
Аватара пользователя


23/07/05
17988
Москва
Zyablik писал(а):
Возник такой вопрос - по ОТО еще ведутся теоретические исследования


Ведутся. И теоретические, и экспериментальные.

Zyablik писал(а):
И еще правильно ли я понял, что есть два способа получения уравнений Эйнштейна


Не знаю, сколько. Много. Тут кое-кто даже из теории эфира ОТО вывел.

 Профиль  
                  
 
 
Сообщение15.07.2008, 01:51 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Zyablik писал(а):
И еще правильно ли я понял, что есть два способа получения уравнений Эйнштейна: 1) из принципа наименьшего действия 2) из принципа общей ковариантности

В книжке МТУ дано шесть разных способов. Ещё один способ (вроде бы) изложен в Фейнмановских лекциях по гравитации.

Zyablik писал(а):
по которому осуществляется подгон уравнений под такой вид, чтобы они в приближении Ньютоновском давали уравнение Пуассона?

А вот такого подгона там нет. Подгоняется только тензорный ранг поля и гравитационная постоянная. Уравнение Пуассона появляется само, вообще всякий раз, когда рассматривается безмассовое поле.

 Профиль  
                  
 
 
Сообщение17.07.2008, 20:14 
Аватара пользователя


03/03/08
160
из прошлого
Можно задать глупый вопрос?

Стоит ли читать Шипова?
И почему.

 Профиль  
                  
 
 
Сообщение17.07.2008, 20:33 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Лжеучёный. Предварительно следует изучить до беглости дифференциальную геометрию и теорию поля (не в пределах Ландафшица, а в пределах, например, Сарданашвили), и освоиться с экспериментальными и астрофизическими данными о гравитации, кривизне и кручении пространства-времени. Тогда он будет как на ладошке.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 78 ]  На страницу 1, 2, 3, 4, 5, 6  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group