2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 15, 16, 17, 18, 19  След.
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 22:50 
Заслуженный участник


18/01/15
3237
dsge
Спасибо за ссылки. Я там, правда, ничего не понял, смог только визуально оценить, по используемой лексике. Я сам в анализе данных ничего не понимаю, так же как и в теорвере и статистике, но понимаю (немного) в оптимизации. (А оптимизация в анализе данных существенно используется, насколько я знаю). По моим понятиям, в оптимизации используются, конечно, векторные поля, но только очень специального типа, а именно градиентные поля (как в той ссылке на википедию, что Вы привели). А ни про какие более общие дифференциальные формы речи не идет. Но понятие о градиентных полях --- это совсем не общая теория дифференциальных форм на многообразиях и их интегрирования.

Замечу, что в программе для подготовки к ШАДу и градиентный спуск, и гессиан упоминаются, но ни про какие дифф. формы и формулу Стокса и речи нет. Поэтому, я думаю, простым обучающимся в ШАДе дифференциальные формы и не нужны. Да и многие другие вещи из Зорича тоже. А если и нужны, то как знания "второй очереди".

А кто сам занимается исследованиями в анализе данных, тому может быть нужна математика всякая разная, и много. И уж, конечно, Зорича действительно надо знать корки до корки. Или во всяком случае когда-то раньше его (или эквивалентные книжки) пройти полностью. Но это, так сказать, другой уровень, такие люди в ШАДе, наверное, редко учатся, разве что преподают...

-- 22.07.2018, 22:00 --

В общем, резюмируя, так: для оригинальных исследований по той науке действительно очень полезны обширные знания математики, тут я с Вами согласен; но для учебы в ШАД, считаю, достаточно более ограниченных.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение22.07.2018, 23:40 
Заслуженный участник


05/08/14
1564
vpb в сообщении #1328254 писал(а):
А ни про какие более общие дифференциальные формы речи не идет. Но понятие о градиентных полях --- это совсем не общая теория дифференциальных форм на многообразиях и их интегрирования.

По первой ссылке строятся многообразия - обобщения линейных главных компонент в статистике - какие-то интегралы по многообразиям там есть. Вторая ссылка про Гамильтоновы системы, там нужны дифференциальные формы. Дифференциальные формы вообще лучше изучать по Арнольду - "Мат.методам механики".

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение23.07.2018, 07:11 
Аватара пользователя


14/12/17
1524
деревня Инет-Кельмында
vpb
dsge в сообщении #1328241 писал(а):
Не помню, eugensk утверждает, что в начале 1-го тома.

Я ошибся, в конце 1-го тома. По изданию 1997 года глава 8 Дифференциальное исчисление функций многих переменных § 4 Основные факты Задачи и упражнения.
Задача о шлифовальном круге, я помнил её как задачу о токарном станке.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение23.07.2018, 23:40 
Заслуженный участник


18/01/15
3237
eugensk
Спасибо, нашел. По моему, вполне хорошая задача.

irod
Не знаю, дойдет ли у Вас до этого, но вполне вероятно (я еще не разбирался), что функции многих переменных лучше Вам учить по Зоричу, а не по Фихтенгольцу. Фихтенгольц в этих местах, говоря в общем, морально устарел.

-- 23.07.2018, 22:47 --

dsge в сообщении #1328263 писал(а):
какие-то интегралы по многообразиям там есть
Так это, наверное, "интегралы первого рода", т.е. интегралы от скалярной функции.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение24.07.2018, 00:27 
Заслуженный участник
Аватара пользователя


30/01/06
72407
vpb в сообщении #1328430 писал(а):
вполне вероятно (я еще не разбирался), что функции многих переменных лучше Вам учить по Зоричу, а не по Фихтенгольцу.

А зачем рассматривать только эти две альтернативы?

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение24.07.2018, 00:52 
Заслуженный участник


18/01/15
3237
Munin в сообщении #1328439 писал(а):
А зачем рассматривать только эти две альтернативы?
По моему, это вообще вопрос не близкого будущего. А еще есть пословица "Лучшее --- враг хорошего".

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 02:53 
Заслуженный участник


18/01/15
3237
irod
В теме выше нашел этот фрагмент
Цитата:
К сожалению, я не смог найти своих черновиков с домашками по калькулусу, а старый курс на Курсере они удалили вместе со всеми его материалами. Возьму наугад несколько примеров из вики того курса: http://calculus.seas.upenn.edu/?n=Main.HomePage. Все что там есть, все темы и примеры к ним, я прорешивал. Например:
Вычислить производную $(e^x+\ln x)\sin x$.
Вычислить предел $\lim\limits_{x\to 0}(1+\arctan (x/2))^{2/x}$.
Вычислить предел $\lim\limits_{x\to 0}\frac{e^x-\sin x-1}{x^2-x^3}$ (с помощью правила Лопиталя или ряда Тейлора).
Разложить в ряд Тейлора $e^{1-\cos t}$.
Вычислить интеграл $\int \frac{\ln(15x^5)}{x}dx$.
Вычислить интеграл $\int e^{2x}\sin 3xdx$ (интегрированием по частям).
Исследовать на сходимость ряды $\sum\limits^\infty _{n=1}\frac{n+4}{n(2+n^4)^{1/3}}$ и $\sum\limits^\infty _{n=1}\frac{|\sin(n)^n|}{n^2}$.
Я решал в том курсе и гораздо более хитрые задачки, опять же без понимания смысла. Моих техник хватило даже на решение нескольких подобных задачек из вступительных экзаменов в ШАД.
Сейчас я уже все это подзабыл, и мне нужно какое-то время (думаю, небольшое) на вспоминание.


Хочу уточнить: так Вы задачи на предел с арктангенсом и сходимость рядов тоже решали без понимания смысла ? Т.е. Вы, когда решали, не смогли бы доказать, пусть нестрого, что те ряды сходятся, а предел существует ?

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 13:19 


21/05/16
4292
Аделаида
vpb в сообщении #1328192 писал(а):
1) Пусть $V$ --- объем куба, $S$ --- площадь его поверхности. Выразить $V$ как функцию от $S$, а $S$ --- как функцию от $V$. Выразить зависимость между $S$ и $V$ полиномиальным уравнением: $F(S,V)=0$, где $F$ --- некоторый многочлен от двух переменных.

(Оффтоп)

$V=x^3$
$S=6x^2$
$V=(\frac{S}6)^{\frac32}$
$S=6V^{\frac23}$
$S^3-216V^2=0$


-- 27 июл 2018, 20:05 --

vpb в сообщении #1328192 писал(а):
2) Найти производные следующих функций :
(а) $y=\frac{2x}{x^2+3}$
(б) $y=(x+1)\sqrt{ax^2+bx+c}$
(в) $y=\sqrt{x^2+\sqrt[3]{x}}$
(г) $y=\cos(x^2)$
(д) $y=(\ln x)^{\ln\ln x}$
(е) $y=\arctg(e^{\sqrt x})$

(Оффтоп)

(а) $y'=\frac{6-2x^2}{(x^2+3)^2}$
(б) $y'=\sqrt{ax^2+bx+c}+\frac{(x+1)(2ax+b)}{2\sqrt{ax^2+bx+c}}$
(в) $y'=\frac{2x+\frac1{3x^{\frac23}}}{2\sqrt{x^2+\sqrt[3]{x}}}$
(г) $y'=-2x\sin (x^2)$
(д) $\ln y=(\ln\ln x)^2$
$\frac{y'}{y}=\frac{2\ln\ln x}{x\ln x}$
$y'=\frac{2(\ln x)^{\ln\ln x} \ln\ln x}{x\ln x}$
(е) $\tg y=e^{\sqrt x}$
$y' (\sec y)^2=\sqrt x e^{\sqrt x}$
$y'=\frac{\sqrt x e^{\sqrt x}}{1+e^{2\sqrt x}}$


-- 27 июл 2018, 20:32 --

vpb в сообщении #1328192 писал(а):
3) Найти следующие интегралы (вручную, а не с помощью таблиц), неопределенные и определенный.

(а) $\int\frac{dx}{x^2+2x-3}$
(б) $\int\frac{dx}{x^2+2x+10}$
(в) $\int x^2\ln x\,dx$
(г) $\int_0^{2\pi} \sin^4x\,dx$

(Оффтоп)

(а) $x^2+2x-3=0$
$(x+3)(x-1)=0$
$\frac{1}{x^2+2x-3}=\frac{-1/4}{x+3}+\frac{1/4}{x-1}$
$\int\frac{dx}{x^2+2x-3}=-\frac{\ln |x+3|}4+\frac{\ln |x-1|}4+C$
(б) $x^2+2x+10=0$ Нет корней.
$x^2+2x+10=9((\frac{x+1}3)^2+1)$
$t=\frac{x+1}3$
$dt=\frac{dx}3$
$\int\frac{dx}{x^2+2x+10}=\frac13 \int\frac{dt}{t^2+1}=\frac{\arctg \frac{x+1}3}3 +C$
(в) $f'=x^2$
$g=\ln x$
$\int x^2\ln x\,dx=\frac{x^3 \ln x}3-\frac13 \int x^2\,dx=\frac{x^3 \ln x}3-\frac{x^3}9 +C$
(г) $\int_0^{2\pi} \sin^4x\,dx$=\int_{-\pi}^{\pi} \cos^4x\,dx$
Дальше универсальную тригонометрическую применять?


-- 27 июл 2018, 20:37 --

vpb в сообщении #1328192 писал(а):
4) Найти наименьшее значение функции $f(x)=x\ln x$ при $x\in(0,+\infty)$.

(Оффтоп)

$f'(x)=\ln x +1=0$
$x=\frac1e$
Справа производная положительна, слева отрицательна.
$f(\frac1e)=-\frac1e$


-- 27 июл 2018, 20:48 --

vpb в сообщении #1328192 писал(а):
5) Найти площадь сегмента параболы $y=x^2-2x$, который от нее отсекает прямая $y=2x$.

(Оффтоп)

$\int\limits_{0}^{4}2xdx - \int\limits_{0}^{4}(x^2-2x)dx=16-(64/3-16)=\frac{32}3$

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 14:36 


21/05/16
4292
Аделаида
vpb в сообщении #1328192 писал(а):
6) (а) Доказать, что если $y(x)$ --- многочлен степени $\leq2$, $\overline y$ --- его среднее значение на отрезке $[a,b]$, то
$$ \overline y= \frac16 (y(a)+y(b)+4y(\frac{a+b}2) ).$$

(Оффтоп)

$y=cx^2+dx+e$
$\overline y=\frac1{b-a}\int\limits_{a}^{b}ydx=\frac{c}3(b^2+ab+a^2)+\frac{d}2(b+a)+e$
$\frac16 (y(a)+y(b)+4y(\frac{a+b}2) )=\frac{c}6(2a^2+2ab+2b^2)+\frac{d}6(3a+3b)+\frac{e}6\times 6$


-- 27 июл 2018, 21:21 --

vpb в сообщении #1328192 писал(а):
6) (б) Найти числа $A$, $B$, $C$, $D$ такие, что для любого многочлена степени $\leq3$
$$ \overline y=Ay(a)+By(\frac23a+\frac13b)+Cy(\frac13a+\frac23b)+Dy(b). $$

(Оффтоп)

$y=cx^3+dx^2+ex+f$
$\overline y=\frac1{b-a}\int\limits_{a}^{b}ydx=\frac{c}4(b^3+a^3+ab^2+a^2b)+\frac{d}3(b^2+ab+a^2)+\frac{e}2(b+a)+f$
$Ay(a)+By(\frac23a+\frac13b)+Cy(\frac13a+\frac23b)+Dy(b)=c((A+\frac{8B}{27}+\frac{C}{27})a^3+(\frac{4B}{27}+\frac{2C}{27})a^2b+(\frac{2B}{27}+\frac{4C}{27})ab^2+(D+\frac{B}{27}+\frac{8C}{27})b^3)+...$
Осталось дописать и решить систему уравнений.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 14:54 


22/06/09
975
kotenok gav

(Оффтоп)

kotenok gav в сообщении #1329115 писал(а):
Дальше универсальную тригонометрическую применять?

Вы можете преобразовать $\sin^4(x)$ в более удобоваримое (для интегрирования) выражение типа $A\sin(kx)+B\cos(lx)+..$?

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 14:57 


21/05/16
4292
Аделаида
vpb в сообщении #1328192 писал(а):
7) Найти ряд Маклорена функции $y=\tg(\frac\pi4+x)$ до членов порядка $x^2$ включительно.

(Оффтоп)

$\tg(\frac\pi4)=1$
$(\sec(\frac\pi4))^2=2$
$2(\sec(\frac\pi4))^2 \tg(\frac\pi4)=4$
$\tg(\frac\pi4+x)=1+2x+2x^2+...$

(Оффтоп)

Dragon27 в сообщении #1329132 писал(а):
Вы можете преобразовать $\sin^4(x)$ в более удобоваримое (для интегрирования) выражение типа $A\sin(kx)+B\cos(lx)+..$?

Кажется, понял.


-- 27 июл 2018, 21:43 --

vpb в сообщении #1328192 писал(а):
(г) $\int_0^{2\pi} \sin^4x\,dx$

(Оффтоп)

$$\cos(2x)=1-2\sin^2 x=2\cos^2 x-1$$
$\sin^4 x=2\sin^2 x(2-2\cos^2 x)/4=(1-\cos (2x))(1-\cos (2x))/4=(1-2\cos (2x)+\cos^2 (2x))/4=3/8-1/2 \cos(2x)+1/8 \cos(4x)$
$\int_0^{2\pi} \sin^4x\,dx=3/8\times 2\pi-1/4\sin (4\pi)+1/32\sin (8\pi)=\frac{3\pi}4$

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 15:30 
Заслуженный участник


16/02/13
4214
Владивосток

(Оффтоп)

2а — там не $-4x^2$?

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 19:11 


21/05/16
4292
Аделаида

(Оффтоп)

iifat в сообщении #1329138 писал(а):
2а — там не $-4x^2$?

$2x^2-4x^2=-2x^2$

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 19:31 
Заслуженный участник


16/02/13
4214
Владивосток
Да. Обсчитался.

 Профиль  
                  
 
 Re: Ускорение математической подготовки к ШАД Яндекса
Сообщение27.07.2018, 23:00 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Кажется, всё это задавали другому человеку...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 282 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group