2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение19.10.2017, 20:53 
Заслуженный участник


27/04/09
28128
ludwig51 в сообщении #1256972 писал(а):
Только я от вашего велосипеда убрал ненужные ему крылья и пропеллер.
:facepalm:

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 02:10 
Заслуженный участник


22/05/11
3350
Australia
ludwig51 в сообщении #1256904 писал(а):
$F=-m\gamma ge^{i\alpha }$ в вашей форме записи.
В моей форме записи $F=-mg\gamma \dot r/|\dot r|$, где $F$ и $r$ - комплексные числа. Мне не нужно записывать их в показательной форме, поскольку я записываю уравнения движения в связанной декартовой системе координат.

ludwig51 в сообщении #1256904 писал(а):
$\mathbf{e}^{i\alpha } $ у меня это единичный вектор.
$\alpha$ у вас - это, очевидно, угол, т.е. действительное число.

Что такое у вас $i$? Вы пишете, что у вас комплесных чисел нет, т.е. это не мнимая единица. А что тогда?

Что такое у вас $\mathbf{e}$ и как определяется операция возведения его в степень $i\alpha$?

ludwig51 в сообщении #1256939 писал(а):
Так как остался только один базисный вектор j, то радиус вектор можно представить в показательной форме.
$\vec{r}=r\mathbf{e}^{j\varphi }$, где
$r$ модуль вектора, $\varphi $ аргумент.
Что такое у вас $j$ - орт оси ординат или что-то еще? Что такое у вас $\mathbf{e}$ и как определяется операция возведения его в степень $j\varphi$? А "аргумент вектора" у вас - это, как я понял, угол между вектором и осью абсцисс.

ludwig51 в сообщении #1256939 писал(а):
Операции с базисным вектором:
$j^2=-1$, $\frac{1}{j}=-j$
Ну и чем ваш "базисный вектор" отличается от мнимой единицы?

ludwig51 в сообщении #1256939 писал(а):
радиус вектор в плоскости $\mathbf{r}=x+y\mathbf{j}$ в алгебраической форме.
Так у вас получается сложение скаляра с вектором. Дальше вы пытаетесь это объяснить:

ludwig51 в сообщении #1256949 писал(а):
Базисный вектор j направлен по оси ординат, базисный вектор 1 направлен по оси абсцисс.
1 использовать в формулах не имеет смысла. Он равен единице.
Вектор не может быть равен единице, поскольку единица - это скаляр. И писать его как раз нужно, чтобы не складывать вектор со скаляром: $\mathbf{r}=x\mathbf{i}+y\mathbf{j}$

ludwig51 в сообщении #1256964 писал(а):
Например радиус вектор $\vec{r}=\mathbf{1}x+\mathbf{j}y=x+\mathbf{j}y=re^{j\varphi }$
Те же вопросы: что такое у вас $e$ и $j$ и как определяется операция возведения в степень? И не нужно обозначать орт оси абсцисс как $\mathbf{1}$. От этого вектор скаляром не станет. И не нужно выбрасывать орт оси абсцисс из формулы. От этого она становится бессмысленной.

ludwig51 в сообщении #1256939 писал(а):
Дифференцирование векторов:
$\vec{\dot{r}}=(\dot{r}+j\omega r)\mathbf{e}^{j\omega t}=\sqrt{\dot{r}^2+(\omega r)^2}e^{j(\varphi +\arctg\frac{\omega r}{\dot{r}})}$
Что такое $\omega$? И откуда берется $\omega t$?

ludwig51 в сообщении #1256939 писал(а):
А комплексных чисел в моём нововведении нет. Это только похожесть.
В Вашем "нововведении" именно что комлексные числа. Которые вы пытаетесь замаскировать под векторы и при этом записываете в показательной форме. Получается мешанина. Как я уже цитировал: смешались в кучу кони, люди...

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 14:20 


22/11/13
155
Sergey from Sydney в сообщении #1257075 писал(а):
Что такое у вас $i$?

У меня нет $i$
Sergey from Sydney в сообщении #1257075 писал(а):
Что такое у вас $\mathbf{e}$ и как определяется операция возведения его в степень $i\alpha$?


у меня нет отдельно $\mathbf{e}$. А $i\alpha$ у меня вообще нет.
Sergey from Sydney в сообщении #1257075 писал(а):
Ну и чем ваш "базисный вектор" отличается от мнимой единицы?

Мнимая единица в математике комплексных чисел. У меня в механике нет комплексных чисел.
Sergey from Sydney в сообщении #1257075 писал(а):
Те же вопросы: что такое у вас $e$ и $j$ и как определяется операция возведения в степень?

У меня нет отдельно $e$ и $j$
Есть орт $e^{j\varphi }$ вектора $\vec{r}$.
$(e^{j\varphi })^2=1$, где
$\varphi=\omega t$ угол между радиус вектором и осью абсцисс, зависит от времени.
$\omega$ угловая скорость вращения радиус вектора в данной системе координат. Может так же зависеть от времени.
При $\varphi=0$
$\vec{r}=re^{0j }=x$ этот вектор совпадает по направлению с осью абсцисс.
При $\varphi=\frac{\pi }{2}$
$\vec{r}=re^{j\frac{\pi }{2}}=jy$ этот вектор совпадает по направлению с осью ординат.
Sergey from Sydney в сообщении #1257075 писал(а):
В Вашем "нововведении" именно что комлексные числа.

А комплексных чисел в моём нововведении нет. Это только похожесть.

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 14:45 


27/08/16
10452
ludwig51 в сообщении #1253482 писал(а):
для упрощения переходим от векторной формы записи через орты к комплексной форме.


ludwig51 в сообщении #1257160 писал(а):
А комплексных чисел в моём нововведении нет. Это только похожесть.


:facepalm:

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 14:53 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
Я вот просмотрел всю тему с самого начала ещё раз. Прежде всего у меня возник вопрос, почему, собственно, обычный орт $\vec{e_r}$ необходимо вычурно обозначать $e^{j\varphi}$. После этого соответственно: чем же не устраивают обычные полярные координаты, в которых всё прекрасно работает без отсылок к комплексным числам.

Ну, и не могу пройти мимо:
ludwig51 в сообщении #1255669 писал(а):
В механике деление векторов не определено.
ludwig51 в сообщении #1256939 писал(а):
операция деления векторов не определена
ludwig51 в сообщении #1256939 писал(а):
Операции с единичным вектором:
$(\mathbf{e}^{j\varphi })^2=1$, $\frac{1}{\mathbf{e}^{j\varphi }}=-\mathbf{e}^{j\varphi }$ - имеется доказательство.


В общем, впечатление складывается не очень хорошее от всего обсуждения в целом. Не то, действительно, обсуждается "велосипед", только не усовершенствованный удалением пропеллера, а наоборот ухудшенный возвращением к конструкции полуторавековой давности; не то довольно-таки стандартный приём формального использования комплексных чисел при решении системы дифференциальных уравнений выдаётся за ноу-хау. В обоих случаях шесть страниц - это многовато.

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 15:29 


22/11/13
155
realeugene
Разумное замечание.
В математике комплексных чисел:
$c=a+ib$ комплексное число. Разрешено деление комплексных чисел.
$c^2=a^2+b^2+2iab$ так же комплексное число.
А попробуйте взять производную от комплексного числа $c=a+ib$
В аналитической геометрии на плоскости я ввожу понятие векторов записанных в комплексной форме.
Но к комплексным числам это введение не имеет отношение. Это только похожесть.
Радиус вектор $\vec{r}=x+jy=\sqrt{x^2+y^2}e^{j\arctg\frac{y}{x}}$
Операции деления не определены.
При возведении в квадрат получаем не комплексное число, а скаляр, который является функцией времени.
$(\vec{r})^2=x^2+y^2=r^2$
Производная - по правилам дифференцирования сложных функций.
$\frac{d(\vec{r})}{dt}=\frac{d}{dt}\left [  r(t)e^{j\varphi (t)}\right ]$
$\tg\varphi =\frac{y(t)}{x(t)}$

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 15:35 


27/08/16
10452
ludwig51 в сообщении #1257187 писал(а):
А попробуйте взять производную от комплексного числа $c=a+ib$
Нуль, как производная от константы. Вы не умеете работать с комплексными числами?

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 15:43 
Модератор
Аватара пользователя


30/09/17
1237
ludwig51 в сообщении #1257187 писал(а):
Операции деления не определены.

Вам выше привели пример, когда Вы сами нарушили это правило.

Ваше последнее сообщение содержит по меньшей мере третий повтор одного и того же. Ничего нового к обсуждению оно не добавляет. Кроме того, Вам уже не раз указали на недостатки описываемой конструкции с математической стороны. Если же их устранить, то получится либо одна, либо другая, но давно и хорошо известная вещь. Всё это заставляет задуматься о целесообразности продолжения обсуждения. Во всяком случае, в его нынешнем виде.

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 17:14 


22/11/13
155
Metford в сообщении #1257171 писал(а):
почему, собственно, обычный орт $\vec{e_r}$ необходимо вычурно обозначать $e^{j\varphi}$. После этого соответственно: чем же не устраивают обычные полярные координаты, в которых всё прекрасно работает без отсылок к комплексным числам.

Эти орты равны.
$\vec{e_r}=e^{j\varphi}$
Радиус вектор через эти орты.
$\vec{r}=r\vec{e_r},\,\vec{r}=re^{j\varphi}$

Теперь берём первую производную от радиус вектора по времени:

$\frac{d\vec{r}}{dt}=\dot{r}\vec{e_r}+\omega r\vec{e}_{\perp r}$
Во втором слагаемом $\omega\vec{e}_{\perp r}$ это производная от орта $\vec{e_r}$
$\vec{e}_{\perp r}$ обозначает, что этот орт опережает орт $\vec{e_r}$ на $\frac{\pi }{2}$
Запись не очень наглядная. В орте $\vec{e_r}$ нет угловой скорости.

$\frac{d\vec{r}}{dt}=\dot{r}e^{j\varphi}+j\omega r e^{j\varphi}$
базисный вектор j во втором слагаемом обозначает, что вектор $j\omega r e^{j\varphi}$ опережает радиус вектор $\vec{r}$ на $\frac{\pi }{2}$
Вторая запись радиус вектора нагляднее. И понятно взятие производной от показательной функции.

Вторая производная. В общем случае $\omega =\omega (t)$
Продолжение следует...

-- 20.10.2017, 15:32 --

Eule_A в сообщении #1257195 писал(а):
Вам выше привели пример, когда Вы сами нарушили это правило.

Я привёл пример операций с единичным вектором, а не пример деления векторов.
А насчёт целесообразности продолжения темы, я согласен.
Задают одни и те же вопросы. И я повторяюсь.
Спасибо форумчанам за участие в теме.
И продолжение моего незаконченного поста не будет. Производные все умеют брать.

 Профиль  
                  
 
 Re: Брусок на вращающемся диске (нововведение)
Сообщение20.10.2017, 18:22 
Заслуженный участник


27/04/09
28128
ludwig51 в сообщении #1257160 писал(а):
А комплексных чисел в моём нововведении нет. Это только похожесть.
В математике объекты обычно рассматриваются с точностью до изоморфизма. Если <ваша штука> ведёт себя в точности как $\mathbb C$, то это и есть $\mathbb C$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 85 ]  На страницу Пред.  1, 2, 3, 4, 5, 6

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group